首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   917篇
  免费   68篇
  2023年   3篇
  2022年   6篇
  2021年   19篇
  2020年   10篇
  2019年   11篇
  2018年   9篇
  2017年   14篇
  2016年   11篇
  2015年   37篇
  2014年   45篇
  2013年   56篇
  2012年   63篇
  2011年   61篇
  2010年   41篇
  2009年   42篇
  2008年   40篇
  2007年   66篇
  2006年   54篇
  2005年   49篇
  2004年   49篇
  2003年   37篇
  2002年   29篇
  2001年   21篇
  2000年   20篇
  1999年   16篇
  1998年   8篇
  1997年   10篇
  1996年   6篇
  1995年   6篇
  1994年   3篇
  1993年   7篇
  1992年   18篇
  1991年   16篇
  1990年   8篇
  1989年   5篇
  1988年   10篇
  1987年   7篇
  1986年   3篇
  1985年   5篇
  1984年   3篇
  1983年   3篇
  1982年   3篇
  1981年   4篇
  1980年   8篇
  1978年   11篇
  1977年   3篇
  1975年   3篇
  1974年   4篇
  1967年   3篇
  1966年   5篇
排序方式: 共有985条查询结果,搜索用时 203 毫秒
101.
Activation-induced cell death (AICD) as well as programmed cell death (PCD) serve to control the expansion of activated T cells to limit untoward side effects of continued effector responses by T cells and to maintain homeostasis. AICD of T cells in tumor immunotherapy can be counterproductive particularly if the activated T cells undergo apoptotic death after the very first secondary encounter of the specific epitope. We examined the extent to which tumor epitope-specific CTLs that are activated and expanded in an in vitro-matured dendritic cell-based primary stimulation protocol undergo AICD following their first secondary encounter of the cognate epitope. Using the MART-1(27-35) epitope as a prototype vaccine epitope, we also examined whether these CTLs could be rescued from AICD. Our results demonstrate that a substantial fraction of MART-1(27-35) epitope-specific primary CTLs undergo AICD upon the very first secondary encounter of the cognate epitope. The AICD in these CTLs is neither caspase dependent nor is it triggered by the extrinsic death signaling pathways (Fas, TNFR, etc.). These CTLs, interestingly, could be rescued from AICD by the JNK inhibitor, SP600125. We also found that SP600125 interferes with their IFN-gamma response but does not block their cytolytic function. The rescued CTLs, however, regain their capacity to synthesize IFN-gamma if continued in culture without the inhibitor. These observations have implications in tumor immunotherapy and in further studies for regulation of AICD in CTLs.  相似文献   
102.
The role of virus infection in a simple phytoplankton zooplankton system   总被引:4,自引:0,他引:4  
Many planktonic species show spectacular bursts ("blooms") in population density. Though viral infections are known to cause behavioural and other changes in phytoplankton and other aquatic species, yet their role in regulating the phytoplankton population is still far from being understood. To study the role of viral diseases in the planktonic species, we model the phytoplankton-zooplankton system as a prey-predator system. Here the prey (phytoplankton) species is infected with a viral disease that divides the prey population into susceptible and infected classes, with the infected prey being more vulnerable to predation by the predator (zooplankton). The dynamical behaviour of the system is investigated from the point of view of stability and persistence both analytically and numerically. The model shows that infection can be sustained only above a threshold of force of infection, and, there exists a range in the infection rate where this system shows "bloom"-like stable limit cycle oscillations. The time series of natural "blooms" with different types of irregular oscillations can arise in this model simply from a biologically realistic feature, i.e., by the random variation of the epidemiological parameter (rate of infection) in the infected prey population. The difference in mean strength of infection alone can lead to the different types of patterns observed in natural planktonic blooms.  相似文献   
103.
The extracellular matrix (ECM) or cell wall is a dynamic system and serves as the first line mediator in cell signaling to perceive and transmit extra- and intercellular signals in many pathways. Although ECM is a conserved compartment ubiquitously present throughout evolution, a compositional variation does exist among different organisms. ECM proteins account for 10% of the ECM mass, however, comprise several hundreds of different molecules with diverse functions. To understand the function of ECM proteins, we have developed the cell wall proteome of a crop legume, chickpea (Cicer arietinum). This comprehensive overview of the proteome would provide a basis for future comparative proteomic efforts for this important crop. Proteomic analyses revealed new ECM proteins of unknown functions vis-à-vis the presence of many known cell wall proteins. In addition, we report here evidence for the presence of unexpected proteins with known biochemical activities, which have never been associated with ECM.  相似文献   
104.
105.
Dihydrofolate reductase (DHFR) of the parasite Trypanosoma cruzi (T. cruzi) is a potential target for developing drugs to treat Chagas’ disease. We have undertaken a detailed structure–activity study of this enzyme. We report here synthesis and characterization of six potent inhibitors of the parasitic enzyme. Inhibitory activity of each compound was determined against T. cruzi and human DHFR. One of these compounds, ethyl 4-(5-[(2,4-diamino-6-quinazolinyl)methyl]amino-2-methoxyphenoxy)butanoate (6b) was co-crystallized with the bifunctional dihydrofolate reductase-thymidylate synthase enzyme of T. cruzi and the crystal structure of the ternary enzyme:cofactor:inhibitor complex was determined. Molecular docking was used to analyze the potential interactions of all inhibitors with T. cruzi DHFR and human DHFR. Inhibitory activities of these compounds are discussed in the light of enzyme–ligand interactions. Binding affinities of each inhibitor for the respective enzymes were calculated based on the experimental or docked binding mode. An estimated 60–70% of the total binding energy is contributed by the 2,4-diaminoquinazoline scaffold.  相似文献   
106.
Rotavirus (RV) diarrhoea causes huge number deaths in children less than 5 years of age. In spite of available vaccines, it has been difficult to combat RV due to large number of antigenically distinct genotypes, high mutation rates, generation of reassortant viruses due to segmented genome. RV is an eukaryotic virus which utilizes host cell machinery for its propagation. Since RV only encodes 12 proteins, post-translational modification (PTM) is important mechanism for modification, which consequently alters their function. A single protein exhibiting different functions in different locations or in different subcellular sites, are known to be 'moonlighting'. So there is a possibility that viral proteins moonlight in separate location and in different time to exhibit diverse cellular effects. Based on the primary sequence, the putative behaviour of proteins in cellular environment can be predicted, which helps to classify them into different functional families with high reliability score. In this study, sites for phosphorylation, glycosylation and SUMOylation of the six RV structural proteins (VP1, VP2, VP3, VP4, VP6 & VP7) & five non-structural proteins (NSP1, NSP2,NSP3,NSP4 & NSP5) and the functional families were predicted. As NSP6 is a very small protein and not required for virus growth & replication, it was not included in the study. Classification of RV proteins revealed multiple putative functions of each structural protein and varied number of PTM sites, indicating that RV proteins may also moonlight depending on requirements during viral life cycle. Targeting the crucial PTM sites on RV structural proteins may have implications in developing future anti-rotaviral strategies.  相似文献   
107.
A blue luminescent dichlorido-bridged dinuclear copper(II) (S = 1/2) complex, [CuII2(HL)2(μ-Cl)2]·2H2O, 1a was synthesized with the 1:1 reaction of the acyclic tridentate salicylaldehyde 2-pyridyl hydrazone ligand, HL, 1. The complex 1a displays multiple bands in the visible region (400-470 nm). The association constant (Kass, UV-Vis) was found to be 1.186 × 104 for 1a at 298 K. The copper(II)-copper(III) oxidation potential lies near 0.32 V versus Ag/AgCl electrode. On excitation at 390 nm, the ligand 1 strongly emits at 444 nm due to an intraligand 1(π-π) transition. Upon complexation with copper(II) the emission peak is slightly red shifted (λex 390 nm, λem 450 nm, F/F0 0.81) with little quenching. Molecular structure of 1a (Cu···Cu 3.523 Å) has been determined by single crystal X-ray diffraction studies. DFT and TDDFT calculations strongly support the spectral behavior of the ligand and the complex. The complex 1a exhibits a strong interaction towards DNA as revealed from the Kb (intrinsic binding constant) 2.05 × 104 M−1 and Ksv (Stern-Volmer quenching constant) 2.47 values. The complex exhibits cytotoxic effect and the LD50 value for HeLa cells was calculated as 5.44 μM at which the cell cycle was arrested at G2/M phase.  相似文献   
108.
Interaction of a cationic phenazinium dye, phenosafranin (PSF), with the anionic liposomal vesicle/bilayer of dimyristoyl-l-α-phosphatidylglycerol (DMPG) has been demonstrated using steady state and time resolved fluorescence and fluorescence anisotropy techniques. The charge transfer emission spectrum of PSF shows a dramatic modification in terms of fluorescence yield together with an appreciable hypsochromic shift in the lipid environment. The blue shift indicates a lowering in polarity inside the vesicle as compared to that in bulk water. The fluorescence and fluorescence quenching studies and micropolarity determination reveal that the cationic fluorophore has a profound binding interaction with the anionic DMPG membrane. Anisotropy study indicates the imposition of a motional restriction on the probe inside the bilayer. The electrostatic interaction between the cationic dye and the anionic lipid membrane has been argued to be the reason behind all these observations. The results could be useful in analyzing membrane organization and heterogeneity in natural membranes exploiting PSF or alike compounds as fluorescent probes.  相似文献   
109.
110.
Inducible costimulator (ICOS) ligand (ICOSL), a B7-related transmembrane glycoprotein with extracellular IgV and IgC domains, binds to ICOS on activated T cells and delivers a positive costimulatory signal for optimal T cell function. Toward determining the structural features of ICOSL crucial for its costimulatory function, the present study shows that ICOSL displays a marked oligomerization potential, resembling more like B7-1 than B7-2. Use of ICOSL constructs lacking either the IgC or IgV domain demonstrates that receptor binding is mediated solely by the IgV domain but requires the IgC domain for maintaining the structural integrity of the protein. To map further the receptor recognition surface on ICOSL, a homology-based protein structure model of the ICOS:ICOSL complex was constructed. Based on predictions from the model, a series of mutations were generated targeting the potential receptor binding surface on ICOSL, and the mutants were tested for their biological function in terms of ICOS binding and T cell costimulation ability. The results provide experimental validation of the model and show that the receptor binding site on ICOSL is constituted chiefly by aromatic/hydrophobic residues. Critical ICOSL residues essential for ICOS binding map to the GFCC'C' beta-sheet face of the IgV domain and approximately overlap with the B7-1/B7-2 motif(s) that recognize CD28/CTLA-4. Altogether, similar structural features of ICOSL and B7 isoforms suggest a close evolutionary relationship between these costimulatory ligands, yet differences at the same time explain their unique specificity for the cognate binding partners, ICOS and CD28/CTLA-4, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号