首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5322篇
  免费   252篇
  国内免费   4篇
  5578篇
  2023年   51篇
  2022年   87篇
  2021年   144篇
  2020年   100篇
  2019年   100篇
  2018年   156篇
  2017年   130篇
  2016年   185篇
  2015年   251篇
  2014年   238篇
  2013年   398篇
  2012年   424篇
  2011年   392篇
  2010年   260篇
  2009年   221篇
  2008年   258篇
  2007年   255篇
  2006年   226篇
  2005年   190篇
  2004年   151篇
  2003年   147篇
  2002年   112篇
  2001年   84篇
  2000年   62篇
  1999年   56篇
  1998年   31篇
  1997年   33篇
  1996年   25篇
  1995年   28篇
  1994年   18篇
  1992年   39篇
  1991年   37篇
  1990年   41篇
  1989年   33篇
  1988年   40篇
  1987年   32篇
  1986年   34篇
  1985年   39篇
  1984年   40篇
  1983年   40篇
  1982年   31篇
  1981年   25篇
  1979年   32篇
  1977年   25篇
  1976年   17篇
  1975年   19篇
  1974年   24篇
  1972年   32篇
  1971年   23篇
  1969年   17篇
排序方式: 共有5578条查询结果,搜索用时 0 毫秒
111.
Catechins, the flavonoids found in abundance in green tea, have many beneficial health effects such as antioxidative, anticarcinogenic, anti-inflammatory, antiallergic, and hypotensive properties. However, flavonoids have antithyroid/goitrogenic effect, although less information is available about the effect of pure catechin on thyroid physiology. The present investigation has been undertaken to explore the effect of catechin administration on thyroid physiology in rat model. For the in vivo experiment catechin was injected intraperitoneally (i.p.) at doses of 10, 20 and 30 mg/kg body to male albino rats for 15 and 30 days, respectively, and thyroid activities were evaluated with respect to determination of serum levels of thyroid hormones, thyroid peroxidase, 5′-deiodinase I (5′-DI), and Na+, K+-ATPase activities that are involved in the synthesis of thyroid hormone. Catechin decreased the activities of thyroid peroxidase and thyroidal 5′-deiodinase I, while Na+, K+-ATPase activity significantly increased in dose-dependent manner; substantial decrease in serum T3 and T4 levels coupled with significant elevation of serum TSH were also noted. Histological examinations of the thyroid gland revealed marked hypertrophy and/or hyperplasia of the thyroid follicles with depleted colloid content. In in vitro study, short-term exposure of rat thyroid tissue to catechin at the concentrations of 0.10, 0.20, and 0.30 mg/ml leads to decrease in the activities of thyroid peroxidase and 5′-deiodinase I, while the activity of thyroidal Na+, K+-ATPase remains unaltered even at high concentration of catechin treatment. The present study reinforces the concept that catechin, tea flavonoids possess potent antithyroid activity as evidenced from in vivo and in vitro studies.  相似文献   
112.
A marine bacterial strain identified as Vibrio parahaemolyticus by 16S rRNA gene (HM355955) sequencing and gas chromatography (GC) coupled with MIDI was selected from a natural biofilm by its capability to produce extracellular polymeric substances (EPS). The EPS had an average molecule size of 15.278 μm and exhibited characteristic diffraction peaks at 5.985°, 9.150° and 22.823°, with d-spacings of 14.76661, 9.29989 and 3.89650 Å, respectively. The Fourier-transform infrared spectroscopy (FTIR) spectrum revealed aliphatic methyl, primary amine, halide groups, uronic acid and saccharides. Gas chromatography mass spectrometry (GCMS) confirmed the presence of arabinose, galactose, glucose and mannose. 1HNMR (nuclear magnetic resonance) revealed functional groups characteristic of polysaccharides. The EPS were amorphous in nature (CIxrd 0.092), with a 67.37% emulsifying activity, thermostable up to 250°C and displayed pseudoplastic rheology. MALDI-TOF–TOF analysis revealed a series of masses, exhibiting low-mass peaks (m/z) corresponding to oligosaccharides and higher-mass peaks for polysaccharides consisting of different ratios of pentose and hexose moieties. This is the first report of a detailed characterisation of the EPS produced by V. parahaemolyticus, which could be further explored for biotechnological and industrial use.  相似文献   
113.
The Fourier transform Raman and infrared (IR) spectra of the Ceramide 3 (CER3) have been recorded in the regions 200–3500 cm? 1 and 680–4000 cm? 1, respectively. We have calculated the equilibrium geometry, harmonic vibrational wavenumbers, electrostatic potential surfaces, absolute Raman scattering activities and IR absorption intensities by the density functional theory with B3LYP functionals having extended basis set 6-311G. This work is undertaken to study the vibrational spectra of CER3 completely and to identify the various normal modes with better wavenumber accuracy. Good consistency is found between the calculated results and experimental data for the IR and Raman spectra.  相似文献   
114.
Inosine monophosphate dehydrogenase (IMPDH) plays an important role in the Guanosine monophosphate (GMP) biosynthesis pathway. As hIMPDH-II is involved in CML-Cancer, it is thought to be an active target for leukemic drug design. The importance of conserved water molecules in the salt-bridge-mediated interdomain recognition and loop-flap recognition of hIMPDH has already been indicated in some simulation studies (Bairagya et al., 2009, 2011a, 2011b, 2012; Mishra et al., 2012). In this work, the role of conserved water molecules in the recognition of Inosine monophosphate (IMP) and NAD+ (co-factor) to active site residues of both the isoforms has been investigated by all atoms MD-Simulation studies. During 25-ns dynamics of the solvated hIMPDH-II and I (1B3O and 1JCN PDB structures), the involvement of conserved water molecular triad (W M, W L and W C) in the recognition of active site residues (Asp 274, Asn 303, Arg 322, and Asp 364), IMP and NAD+ has been observed (Figure 1). The H-bonding co-ordination of all three conserved water molecular centers is within 4–7 and their occupation frequency is 1.0. The H-bonding geometry and the electronic consequences of the water molecular interaction at the different residues (and also IMP and NAD+) may put forward some rational clues on antileukemic agent design.  相似文献   
115.
Glioblastoma multiforme (GBM) is the most malignant of all the brain tumors with very low median survival time of one year, as per Central Brain Tumor Registry of the USA, 2001. Efforts are ongoing to understand this disease pathogenesis in complete details. Global gene expression changes in GBM pathogenesis have been studied by several groups using microarray technology (e.g. Carro et al., 2010). One of the many approaches to ‘understand the control mechanisms underlying the observed changes in the activity of a biological process’ (Cline et al., 2007) is integration of gene expression and protein–protein interactions (PPI) datasets. Among several examples, aberrant activation of Wnt/β-catenin signaling pathway as well as sonic hedgehog (SHH) signaling pathway is reported in GBMs (Klaus & Birchmeier, 2008). Further, these two pathways are also involved in proliferation and clonogenicity of glioma cancer stem cells (Li et al., 2009), which are thought to play a role in glioma initiation, proliferation, and invasion, and are one of the important points of intervention. Hedgehog–Gli1 signaling is also found to regulate the expression of stemness genes. In this paper, analyses of the relationship between the significant differential expression of these and other genes and the connectivity as well as topological features of a PPI network would be discussed. This way, genes potentially overlooked when relying solely on expression profiles may be identified which can be biologically relevant as possible drug target/s or disease biomarker/s.  相似文献   
116.
117.
Abstract

Transesterification of sucrose with fatty acids catalyzed by subtilisin Carlsberg occurs with regioselectivity that is different from that in lipases. Thermomyces lanuginosus lipase (TlL) and Candida antarctica lipase B (CALB) catalyze synthesis at positions 6 and 6′, with differing abilities, while subtilisin catalysis leads to the l′-acylated sucrose. The catalytic machinery in lipases is approximately mirrored in subtilisins but different pocket morphologies including size, shape, and rearrangement of the catalytic elements underlies the differing regioselectivities. The thermodynamic consequences of these differences on the above reactions have been explored systematically using computational methods, determining the free energies of interaction of the putative transition-state adducts. Analysis of the conformers with the lowest transition state energies (protein-ligand interactions and vibrational entropy contributions) indicates that enthalpic factors control specificities in lipases while entropic factors are more important in subtilisin.  相似文献   
118.
119.
β-glucosidase from Withania somnifera (Solanaceae) leaf has been purified to homogeneity and characterized for its physico-kinetic properties. The enzyme purification was achieved through a sequence of gel filtration and ion-exchange column chromatography, and PAGE revealed the homogeneity purification status of the enzyme. The properties of the enzyme included an acidic pH optima (4.8), alkaline pI (8.7), meso-thermostabity, monomeric structure with subunit molecular weight of about 50 kDa, high affinity for substrate (K m) for pNPG (0.19 mM) and high (105,263 M?1 s?1) catalytic efficiency (K cat/K m). The mesostable enzyme had a stringent substrate specificity restricted only to β-linked gluco-conjugate. The enzyme is optimally active at 40 °C with 12.4 kcal Mol?1 activation energy, and was highly sensitive to d-gluconic acid lactone inhibition (94 % at 1 mM) with an apparent K i 0.21 mM. The enzyme could catalyze transglucosylation of geraniol with pNPG as glucosyl donor, but not with cellobiose. Some of the physico-kinetic properties were noted to be novel when comprehensively compared with its counterparts from plant, animal and microbial counterparts. Nevertheless, the catalytic and other features of the enzyme were relatively closer to Oryza sativa among plants and Talaromyces thermophillus among fungi. Significance of building-up of a library of novel plant β-glucosidases for structural investigation to understand naturally evolved mechanistics of catalysis has been indicated.  相似文献   
120.
Inteins are naturally occurring intervening sequences that catalyze a protein splicing reaction resulting in intein excision and concatenation of the flanking polypeptides (exteins) with a native peptide bond. Inteins display a diversity of catalytic mechanisms within a highly conserved fold that is shared with hedgehog autoprocessing proteins. The unusual chemistry of inteins has afforded powerful biotechnology tools for controlling enzyme function upon splicing and allowing peptides of different origins to be coupled in a specific, time-defined manner. The extein sequences immediately flanking the intein affect splicing and can be defined as the intein substrate. Because of the enormous potential complexity of all possible flanking sequences, studying intein substrate specificity has been difficult. Therefore, we developed a genetic selection for splicing-dependent kanamycin resistance with no significant bias when six amino acids that immediately flanked the intein insertion site were randomized. We applied this selection to examine the sequence space of residues flanking the Nostoc punctiforme Npu DnaE intein and found that this intein efficiently splices a much wider range of sequences than previously thought, with little N-extein specificity and only two important C-extein positions. The novel selected extein sequences were sufficient to promote splicing in three unrelated proteins, confirming the generalizable nature of the specificity data and defining new potential insertion sites for any target. Kinetic analysis showed splicing rates with the selected exteins that were as fast or faster than the native extein, refuting past assumptions that the naturally selected flanking extein sequences are optimal for splicing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号