首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1560篇
  免费   177篇
  1737篇
  2023年   6篇
  2022年   24篇
  2021年   23篇
  2020年   19篇
  2019年   34篇
  2018年   27篇
  2017年   39篇
  2016年   53篇
  2015年   55篇
  2014年   75篇
  2013年   75篇
  2012年   87篇
  2011年   83篇
  2010年   58篇
  2009年   64篇
  2008年   74篇
  2007年   76篇
  2006年   66篇
  2005年   56篇
  2004年   60篇
  2003年   65篇
  2002年   61篇
  2001年   45篇
  2000年   49篇
  1999年   32篇
  1998年   24篇
  1997年   22篇
  1996年   24篇
  1995年   18篇
  1994年   17篇
  1993年   19篇
  1992年   26篇
  1991年   21篇
  1990年   14篇
  1989年   23篇
  1988年   29篇
  1987年   12篇
  1986年   11篇
  1985年   16篇
  1984年   17篇
  1983年   13篇
  1982年   8篇
  1979年   11篇
  1978年   8篇
  1977年   10篇
  1975年   9篇
  1973年   6篇
  1971年   9篇
  1969年   6篇
  1967年   5篇
排序方式: 共有1737条查询结果,搜索用时 15 毫秒
91.
92.
Procaspase-8, the zymogen form of the apoptosis-initiator caspase-8, undergoes phosphorylation following integrin-mediated cell attachment to an extracellular matrix substrate. Concordant with cell attachment to fibronectin, a population of procaspase-8 becomes associated with a peripheral insoluble compartment that includes focal complexes and lamellar microfilaments. Phosphorylation of procaspase-8 both impairs its maturation to the proapoptotic form and can promote cell migration. Here we show that the cytoskeletal adaptor protein CrkL promotes caspase-8 recruitment to the peripheral spreading edge of cells, and that the catalytic domain of caspase-8 directly interacts with the SH2 domain of CrkL. We show that the interaction is abolished by shRNA-mediated silencing of Src, in Src-deficient MEFs, and by pharmacologic inhibitors of the kinase. The results provide insight into how tyrosine kinases may act to coordinate the suppression caspase-8 mediated apoptosis, while promoting cell invasion.  相似文献   
93.
The Banded Iron Formations (BIFs) of south‐western Australia are terrestrial islands characterized by high species richness and endemism. Regional endemics occur across multiple formations without inhabiting the intervening landscape matrix. We investigated whether the occurrence on BIF terrestrial islands has led to genetic differentiation among the eight known populations of the regional endemic, Banksia arborea. Genetic structure was assessed using three chloroplast DNA sequence markers and 11 nuclear microsatellite loci. Phylogenetic relationships were assessed with statistical parsimony and Bayesian methods. Dates of haplotype divergence were estimated using the time to most recent common ancestor of B. arborea and Banksia purdieana, as well as a conservative angiosperm chloroplast (cp)DNA mutation rate. Population genetic diversity and structure was assessed amongst and within populations by genotyping 24 geographically clustered individuals from each BIF and three subpopulations within the Die Hardy Range BIF. Indirect gene flow estimates were determined using a method based on the frequency of private alleles. Banksia arborea showed low genetic diversity in (cp)DNA and a complex structural pattern, with genetic differentiation of some BIF populations and an absence of differentiation amongst others, reflecting either retention of ancestral polymorphism across northern BIF populations or more recent connectivity of these populations. There was little evidence of pollen dispersal both between BIFs and within the large BIF known as Die Hardy Range. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 114 , 860–872.  相似文献   
94.
Neurons communicate with other cells via axons and dendrites, slender membrane extensions that contain pre- or post-synaptic specializations. If a neuron is damaged by injury or disease, it may regenerate. Cell-intrinsic and extrinsic factors influence the ability of a neuron to regenerate and restore function. Recently, the nematode C. elegans has emerged as an excellent model organism to identify genes and signaling pathways that influence the regeneration of neurons1-6. The main way to initiate neuronal regeneration in C. elegans is laser-mediated cutting, or axotomy. During axotomy, a fluorescently-labeled neuronal process is severed using high-energy pulses. Initially, neuronal regeneration in C. elegans was examined using an amplified femtosecond laser5. However, subsequent regeneration studies have shown that a conventional pulsed laser can be used to accurately sever neurons in vivo and elicit a similar regenerative response1,3,7.We present a protocol for performing in vivo laser axotomy in the worm using a MicroPoint pulsed laser, a turnkey system that is readily available and that has been widely used for targeted cell ablation. We describe aligning the laser, mounting the worms, cutting specific neurons, and assessing subsequent regeneration. The system provides the ability to cut large numbers of neurons in multiple worms during one experiment. Thus, laser axotomy as described herein is an efficient system for initiating and analyzing the process of regeneration.  相似文献   
95.
Abstract. Ophiopeza spinosa , a small ophiodermatid ophiuroid, is locally abundant in shallow water rubble habitat at Lizard Island, northern Great Barrier Reef, Australia. This species is a protantric hermaphrodite. The switch from reproduction as a male to a female is progressive, involving a simultaneous hermaphrodite as a transitional stage. Members of O. spinosa brood their young in the respiratory bursae. Cohorts of eggs (280 μm diameter) develop synchronously in the gonad and are spawned as a group into the bursa. Despite non-pelagic development, the larvae of O. spinosa are a vitellaria type typical of broadcast-spawning ophiodermatids, providing a link to an ancestral form with a dispersive larva. The vitellaria has prominent ciliary bands and swims in the same manner as pelagic vitellaria. In vitro , the larvae developed to the juvenile stage independent of the parent. There was no evidence of extraembryonic nutrition; a proportion of the maternal provisions were retained through metamorphosis. This is the first ophiuroid known to brood a pelagic-type vitellaria larva. Juveniles appear to leave the parent at the two- to three-arm segment stage, slightly larger than the newly settled juveniles of ophiodermatids with pelagic vitellariae. The presence of functional larvae in the bursa suggests a recent switch to the incubatory life history in O. spinosa and the possibility of a reversal back to a dispersive life history. O. spinosa have the potential to both brood and broadcast their young.  相似文献   
96.

Background  

The rapid annotation of genes on a genome-wide scale is now possible for several organisms using high-throughput RNA interference assays to knock down the expression of a specific gene. To date, dozens of RNA interference phenotypes have been recorded for the nematode Caenorhabditis elegans. Although previous studies have demonstrated the merit of using knock-down phenotypes to predict gene function, it is unclear how the data can be used most effectively. An open question is how to optimally make use of phenotypic observations, possibly in combination with other functional genomics datasets, to identify genes that share a common role.  相似文献   
97.
Climate change and ocean acidification will expose marine organisms to synchronous multiple stressors, with early life stages being potentially most vulnerable to changing environmental conditions. We simultaneously exposed encapsulated molluscan embryos to three abiotic stressors—acidified conditions, elevated temperate, and solar UV radiation in large outdoor water tables in a multifactorial design. Solar UV radiation was modified with plastic filters, while levels of the other factors reflected IPCC predictions for near-future change. We quantified mortality and the rate of embryonic development for a mid-shore littorinid, Bembicium nanum, and low-shore opisthobranch, Dolabrifera brazieri. Outcomes were consistent for these model species with embryos faring significantly better at 26°C than 22°C. Mortality sharply increased at the lowest temperature (22°C) and lowest pH (7.6) examined, producing a significant interaction. Under these conditions mortality approached 100% for each species, representing a 2- to 4-fold increase in mortality relative to warm (26°C) non-acidified conditions. Predictably, development was more rapid at the highest temperature but this again interacted with acidified conditions. Development was slowed under acidified conditions at the lowest temperature. The presence of UV radiation had minimal impact on the outcomes, only slowing development for the littorinid and not interacting with the other factors. Our findings suggest that a warming ocean, at least to a threshold, may compensate for the effects of decreasing pH for some species. It also appears that stressors will interact in complex and unpredictable ways in a changing climate.  相似文献   
98.
Summary Murine peritoneal macrophages harvested 3–4 days after IP injection of vaccinia virus lysed S91-melanoma tumor cells in vitro; enhanced tumoricidal activity was measured with effector macrophages prepared 5–6 days after vaccinia virus infection. Treatment of virus-elicited macrophages prepared from DBA/2 mice with anti-asialo-GM1 antiserum, anti-Thy 1.2 antiserum or anti-Iad antiserum in the presence of complement so that cells sensitized with antibodies were lysed, did not reduce the measured level of tumoricidal activity indicating that macrophages [Ia(–); asialo GM1(–)] and not natural killer cells [asialo GM1(+); Thy 1.2(±)] or T-cells [Thy 1.2(+)] were responsible for mediating the lysis of S91-melanoma tumor cells. When incubated with virus-elicited macrophages but not thioglycollate-elicited macrophages, the ability of S91-melanoma tumor cells, to synthesize DNA was completely blocked. The results of these experiments support the view that one aspect of antitumor immunity enhanced during immunotherapy with vaccinia virus is the activation of macrophages which have cytolytic as well as cytostatic effects on melanoma tumor cells.  相似文献   
99.

Introduction

Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder that results in functional deficits. However, these functional declines are often not able to be quantified in clinical trials for DMD until after age 7. In this study, we hypothesized that 1H2O T2 derived using 1H-MRS and MRI-T2 will be sensitive to muscle involvement at a young age (5–7 years) consistent with increased inflammation and muscle damage in a large cohort of DMD subjects compared to controls.

Methods

MR data were acquired from 123 boys with DMD (ages 5–14 years; mean 8.6 SD 2.2 years) and 31 healthy controls (age 9.7 SD 2.3 years) using 3-Tesla MRI instruments at three institutions (University of Florida, Oregon Health & Science University, and Children’s Hospital of Philadelphia). T2-weighted multi-slice spin echo (SE) axial images and single voxel 1H-MRS were acquired from the lower leg and thigh to measure lipid fraction and 1H2O T2.

Results

MRI-T2, 1H2O T2, and lipid fraction were greater (p<0.05) in DMD compared to controls. In the youngest age group, DMD values were different (p<0.05) than controls for the soleus MRI-T2, 1H2O T2 and lipid fraction and vastus lateralis MRI-T2 and 1H2O T2. In the boys with DMD, MRI-T2 and lipid fraction were greater (p<0.05) in the oldest age group (11–14 years) than the youngest age group (5–6.9 years), while 1H2O T2 was lower in the oldest age group compared to the young age group.

Discussion

Overall, MR measures of T2 and lipid fraction revealed differences between DMD and Controls. Furthermore, MRI-T2 was greater in the older age group compared to the young age group, which was associated with higher lipid fractions. Overall, MR measures of T2 and lipid fraction show excellent sensitivity to DMD disease pathologies and potential therapeutic interventions in DMD, even in the younger boys.  相似文献   
100.
Turning cells red: signal transduction mediated by erythropoietin   总被引:15,自引:0,他引:15  
Erythropoietin (EPO) is the crucial cytokine regulator of red blood-cell production. Since the discovery of EPO in 1985 and the isolation of its cognate receptor four years later, there has been significant interest in understanding the unique ability of this ligand-receptor pair to promote erythroid mitogenesis, survival and differentiation. The development of knockout mice has elucidated the precise role of the ligand, receptor and downstream players in murine erythroid development. In this review, we summarize EPO-mediated signaling pathways and examine their significance in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号