首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   139篇
  免费   17篇
  2021年   5篇
  2020年   2篇
  2018年   3篇
  2017年   1篇
  2016年   2篇
  2015年   7篇
  2014年   6篇
  2013年   6篇
  2012年   7篇
  2011年   4篇
  2010年   5篇
  2009年   5篇
  2008年   5篇
  2007年   5篇
  2006年   5篇
  2005年   7篇
  2004年   15篇
  2003年   7篇
  2002年   12篇
  2001年   2篇
  2000年   4篇
  1999年   2篇
  1997年   2篇
  1995年   1篇
  1994年   3篇
  1992年   2篇
  1991年   4篇
  1990年   2篇
  1989年   2篇
  1988年   3篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   3篇
  1982年   1篇
  1979年   1篇
  1976年   1篇
  1974年   2篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1965年   1篇
  1964年   1篇
  1961年   1篇
排序方式: 共有156条查询结果,搜索用时 78 毫秒
31.
Summary Two pairs of isonuclear lines of cytoplasmic male-sterile (CMS) and fertile (F) petunia cells grown in suspension culture in the presence or absence of amino acid sources were examined for uptake of 11 amino acids and adenosine. Cells from CMS lines exhibited a significant lower rate of uptake than F cells. These differences, for various amino acids, are a result of lower affinity (high Km) values and of lower maximal velocities. Although the uptake of most of the amino acids examined was affected by the availability of energy in the cell, the differences in uptake seem to be less dependent on the energy status of the cell.Contribution from the Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel. No. 3351-E, 1991 series  相似文献   
32.
Pyruvate is a key product of glycolysis that regulates the energy metabolism of cells. In Trypanosoma brucei, the causative agent of sleeping sickness, the fate of pyruvate varies dramatically during the parasite life cycle. In bloodstream forms, pyruvate is mainly excreted, whereas in tsetse fly forms, pyruvate is metabolized in mitochondria yielding additional ATP molecules. The character of the molecular machinery that mediates pyruvate transport across mitochondrial membrane was elusive until the recent discovery of mitochondrial pyruvate carrier (MPC) in yeast and mammals. Here, we characterized pyruvate import into mitochondrion of T. brucei. We identified mpc1 and mpc2 homologs in the T. brucei genome with attributes of MPC protein family and we demonstrated that both proteins are present in the mitochondrial membrane of the parasite. Investigations of mpc1 or mpc2 gene knock‐out cells proved that T. brucei MPC1/2 proteins facilitate mitochondrial pyruvate transport. Interestingly, MPC is expressed not only in procyclic trypanosomes with fully activated mitochondria but also in bloodstream trypanosomes in which most of pyruvate is excreted. Moreover, MPC appears to be essential for bloodstream forms, supporting the recently emerging picture that the functions of mitochondria in bloodstream forms are more diverse than it was originally thought.  相似文献   
33.
ABSTRACT

We have previously found that Drosophila melanogaster only has one deoxyribonucleoside kinase, Dm-dNK, however, capable to phosphorylate all four natural deoxyribonucleosides. Dm-dNK was originally isolated from an embryonic cell line. We wanted to study the expression of Dm-dNK during development from embryonic cells to adult flies and found declining Dm-dNK activity during development and no activity in adult flies. Surprisingly, the extract from adult flies exhibited a strong inhibitory effect on deoxyribonucloside kinase activity. The dNK-inhibitor was precipitable with ammonium sulfate, and was purified to a high degree by gel-filtration as indicated by LC-MS/MS analysis. Since the inhibitor eluted from G-200 gel-filtration with a size of 10–13 kDa, we named it P12. We tested the purified fraction for specificity towards various enzymes and found that both mammalian and bacterial dNKs were inhibited, whereas there was no effect on hexokinase and pyruvate kinases and acidic phosphatase. However, when tested against cyclin B-dependent kinase, we found a strong inhibitory effect. Both with human Cdk1/CycB and S. pombe Cdc2/B-type cyclin the purified fraction from Superdex 200 that inhibited Dm-dNK, also inhibited the two protein kinases to the same degree. Furthermore, testing P12 in a DNA polymerase based assay we found that the 3′-5′-exonuclease part of the DNA polymerase (Klenow polymerase) was activated.  相似文献   
34.
A cDNA library was derived from the poly(A)+ RNA of young tomato leaves. The library was cloned in a gt11 system and screened by synthetic oligonucleotide probes having sequences that match the codes of conserved regions of amino acid sequences of Cu,Zn superoxide dismutase (SOD) proteins from a wide range of eukaryotic organisms. Two cDNAs were isolated, cloned and sequenced. One of the cDNAs, P31, had a full-size open reading frame of 456 bp with a deduced amino acid sequence having an 80% homology with the deduced amino acid sequence of the cytosolic SOD-2 cDNA of maize. The other cDNA, T10 (extended by T1), had a 651 bp open reading frame that revealed, upon computer translation, 90% homology to the amino acid sequence of mature spinach chloroplast SOD. The 5 end of the reading frame seems to code for a putative transit peptide. This work thus suggests for the first time an amino acid sequence for the transit peptide of chloroplast SOD. Northern hybridizations indicated that each of the P31 and T10 clones hybridized to a blotted poly(A)+ RNA species. These two species are differentially expressed in the plant organs: e.g., the species having the T10 sequence was detected in the leaves but not in roots, while the one with the P31 sequence was expressed in both leaves and roots. The cDNA clones P31 and T10 were also hybridized to Southern blots of endonuclease fragmented tomato DNA. The clones hybridized to specific fragments and no cross hybridization between the two clones was revealed under stringent hybridization conditions; the hybridization pattern indicated that, most probably, only one locus is coding for each of the two mRNA species.  相似文献   
35.
36.
37.
Trypanosoma brucei, a protist responsible for human African trypanosomiasis (sleeping sickness), is transmitted by the tsetse fly where the procyclic forms of the parasite develop in the proline-rich (1–2 mM) and glucose-depleted digestive tract. Proline is essential for the midgut colonization of the parasite in the insect vector, however other carbon sources could be available and used to feed its central metabolism. Here we show that procyclic trypanosomes can consume and metabolize metabolic intermediates, including those excreted from glucose catabolism (succinate, alanine and pyruvate), with the exception of acetate, which is the ultimate end-product excreted by the parasite. Among the tested metabolites, tricarboxylic acid (TCA) cycle intermediates (succinate, malate and α-ketoglutarate) stimulated growth of the parasite in the presence of 2 mM proline. The pathways used for their metabolism were mapped by proton-NMR metabolic profiling and phenotypic analyses of thirteen RNAi and/or null mutants affecting central carbon metabolism. We showed that (i) malate is converted to succinate by both the reducing and oxidative branches of the TCA cycle, which demonstrates that procyclic trypanosomes can use the full TCA cycle, (ii) the enormous rate of α-ketoglutarate consumption (15-times higher than glucose) is possible thanks to the balanced production and consumption of NADH at the substrate level and (iii) α-ketoglutarate is toxic for trypanosomes if not appropriately metabolized as observed for an α-ketoglutarate dehydrogenase null mutant. In addition, epimastigotes produced from procyclics upon overexpression of RBP6 showed a growth defect in the presence of 2 mM proline, which is rescued by α-ketoglutarate, suggesting that physiological amounts of proline are not sufficient per se for the development of trypanosomes in the fly. In conclusion, these data show that trypanosomes can metabolize multiple metabolites, in addition to proline, which allows them to confront challenging environments in the fly.  相似文献   
38.
Oligoadenylate synthetases (OAS) are interferon-induced enzymes that participate in the first line of defense against a wide range of viral infection in animals. Upon activation by viral double-stranded RNA, OAS synthesizes (2-5) oligoadenylates, which activate RNase L, leading to the nonspecific degradation of cellular and viral RNA. Some association studies in humans suggest that variation at one of the OAS genes, OAS1, could be influencing host susceptibility to viral infection. We assessed the diversity of OAS1 in hominoid primates with a focus on chimpanzees. We found that the OAS1 gene is extremely polymorphic in Central African chimpanzee and exhibits levels of silent and replacement diversity much higher than neutral regions of the chimpanzee genome. This level of variation strongly suggests that balancing selection is acting on OAS1, and indeed, this conclusion was validated by several tests of neutrality. We further demonstrated that balancing selection has been acting at this locus since the split between chimpanzees, humans, and gorillas (~8.6 Ma) and caused the persistence of two deeply divergent allelic lineages in Central African chimpanzees. These two groups of OAS1 alleles differ by a large number of amino acids (a.a.), including several a.a. putatively involved in RNA binding. It is therefore very likely that variation at the OAS1 locus affects the innate immune response of individuals to specific viral infection. Our data strongly suggest that interactions between viral RNA and OAS1 are responsible for the maintenance of ancestral polymorphisms at this locus for at least 13.2 My.  相似文献   
39.
The procyclic stage of Trypanosoma brucei, a parasitic protist responsible for sleeping sickness in humans, converts most of the consumed glucose into excreted succinate, by succinic fermentation. Succinate is produced by the glycosomal and mitochondrial NADH-dependent fumarate reductases, which are not essential for parasite viability. To further explore the role of the succinic fermentation pathways, we studied the trypanosome fumarases, the enzymes providing fumarate to fumarate reductases. The T. brucei genome contains two class I fumarase genes encoding cytosolic (FHc) and mitochondrial (FHm) enzymes, which account for total cellular fumarase activity as shown by RNA interference. The growth arrest of a double RNA interference mutant cell line showing no fumarase activity indicates that fumarases are essential for the parasite. Interestingly, addition of fumarate to the medium rescues the growth phenotype, indicating that fumarate is an essential intermediary metabolite of the insect stage trypanosomes. We propose that trypanosomes use fumarate as an essential electron acceptor, as exemplified by the fumarate dependence previously reported for an enzyme of the essential de novo pyrimidine synthesis (Takashima, E., Inaoka, D. K., Osanai, A., Nara, T., Odaka, M., Aoki, T., Inaka, K., Harada, S., and Kita, K. (2002) Mol. Biochem. Parasitol. 122, 189-200).  相似文献   
40.

Objective

To investigate the effects of melatonin treatment in a rat model of white matter damage (WMD) in the developing brain. Additionally, we aim to delineate the cellular mechanisms of melatonin effect on the oligodendroglial cell lineage.

Methods

A unilateral ligation of the uterine artery in pregnant rat at the embryonic day 17 induces fetal hypoxia and subsequent growth restriction (GR) in neonatal pups. GR and control pups received a daily intra-peritoneal injection of melatonin from birth to post-natal day (P) 3.

Results

Melatonin administration was associated with a dramatic decrease in microglial activation and astroglial reaction compared to untreated GR pups. At P14, melatonin prevented white matter myelination defects with an increased number of mature oligodendrocytes (APC-immunoreactive) in treated GR pups. Conversely, melatonin was not found to be associated with an increased density of total oligodendrocytes (Olig2-immunoreactive), suggesting that melatonin is able to promote oligodendrocyte maturation but not proliferation. These effects appear to be melatonin-receptor dependent and were reproduced in vitro.

Interpretation

These data suggest that melatonin has a strong protective effect on developing damaged white matter through decreased microglial activation and oligodendroglial maturation leading to a normalization of the myelination process. Consequently, melatonin should be a considered as an effective neuroprotective candidate not only in perinatal brain damage but also in inflammatory and demyelinating diseases observed in adults.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号