首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   145篇
  免费   10篇
  2023年   7篇
  2022年   6篇
  2021年   7篇
  2020年   7篇
  2019年   9篇
  2018年   7篇
  2017年   5篇
  2016年   9篇
  2015年   7篇
  2014年   11篇
  2013年   12篇
  2012年   17篇
  2011年   14篇
  2010年   5篇
  2009年   1篇
  2008年   5篇
  2007年   12篇
  2006年   2篇
  2005年   3篇
  2004年   2篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1995年   1篇
  1994年   2篇
  1992年   1篇
排序方式: 共有155条查询结果,搜索用时 15 毫秒
121.
122.
Hereditary spherocytosis (HS) is the most common congenital hemolytic anemia in Caucasians, with an estimated prevalence ranging from 1:2000 to 1:5000. The molecular defect in one of the erythrocytes (RBC) membrane proteins underlying HS like; spectrin-α, spectrin-β, ankyrin, band 3 and protein 4.2 that lead to membrane destabilization and vesiculation, may change the RBCs into denser and more rigid cells (spherocytes), which are removed by the spleen, leading to the development of hemolytic anemia. It is classified as mild, moderate and severe, according to the degree of the hemolytic anemia and the associated symptoms. Two-dimensional gel electrophoresis (2-DE) is potentially valuable method for studying heritable disorders as HS that involve membrane proteins. This separation technique of proteins based upon two biophysically unrelated parameters; molecular weight and charge, is a good option in clinical proteomics in terms of ability to separate complex mixtures, display post-translational modifications and changes after phosphorylation. In this study, we have used contemporary methods with some modifications for the solubilisation, separation and identification of erythrocyte membrane proteins in normal and in HS RBCs. Spectrin alpha and beta chain, ankyrin and band 3 proteins expression differences were found with PDQuest software 8.0.1. and peptide mass fingerprinting (PMF) analysis performed for identification of proteins in this study.  相似文献   
123.
124.
125.
Synapsin I, a prominent phosphoprotein in nerve terminals, is proposed to modulate exocytosis by interaction with the cytoplasmic surface of small synaptic vesicles and cytoskeletal elements in a phosphorylation-dependent manner. Tetanus toxin (TeTx), a potent inhibitor of neurotransmitter release, attenuated the depolarization-stimulated increase in synapsin I phosphorylation in rat cortical particles and in synaptosomes. TeTx also markedly decreased the translocation of synapsin I from the small synaptic vesicles and the cytoskeleton into the cytosol, on depolarization of synaptosomes. The effect of TeTx on synapsin I phosphorylation was both time and TeTx concentration dependent and required active toxin. One- and two-dimensional peptide maps of synapsin I with V8 proteinase and trypsin, respectively, showed no differences in the relative phosphorylation of peptides for the control and TeTx-treated synaptosomes, suggesting that both the calmodulin- and the cyclic AMP-dependent kinases that label this protein are equally affected. Phosphorylation of synapsin IIb and the B-50 protein (GAP43), a known substrate of protein kinase C, was also inhibited by TeTx. TeTx affected only a limited number of phosphoproteins and the calcium-dependent decrease in dephosphin phosphorylation remained unaffected. In vitro phosphorylation of proteins in lysed synaptosomes was not influenced by prior TeTx treatment of the intact synaptosomes or by the addition of TeTx to lysates, suggesting that the effect of TeTx on protein phosphorylation was indirect. Our data demonstrate that TeTx inhibits neurotransmitter release, the phosphorylation of a select group of phosphoproteins in nerve terminals, and the translocation of synapsin I. These findings contribute to our understanding of the basic mechanism of TeTx action.  相似文献   
126.
The most prominent adverse effects of nonsteroidal anti-inflammatory drugs (NSAIDs) such as diclofenac (DF) are hepato-renal damage. Natural antioxidants can be preferred as an alternative and/or combination to improve this damage. This present study was conducted to evaluate the protective effect of Tubuloside A (TA) against diclofenac (DF)-induced hepato-renal damage. TA (1 mg/kg, ip) was administered to male Sprague–Dawley rats for 5 days, and DF (50 mg/kg, ip) was administered on Days 4 and 5. Plasma aspartate amino transferase, alanine amino transferase, alkaline phosphatase, blood urea nitrogen and creatinine were measured to evaluate liver and kidney functions. Additionally, oxidative stress parameters (malondialdehyde, glutathione, superoxide dismutase, catalase, and 8-oxo-7,8-dihydro-2′-deoxyguanosine) in blood, liver, and kidney tissues, changes in mRNA expression of genes involved in the Nrf2/HO-1 signalling pathway (Nrf2, HO-1, NQO-1, IL-6, iNOS, Cox-2, TNF-α, IL1-β and NFκB) and apoptotic process (Bcl-2, Cas-3 and Bax) in liver and kidney tissues were determined. Additionally, tissue sections were evaluated histopathologically. Biochemical, histopathological, and molecular results demonstrated the hepato-renal toxic effects of DF, and TA treatment protected the liver and kidney from DF-induced damage. This provides an explanation for the hepato-nephro damage caused by DF and offers new ideas and drug targets together with TA for the prevention and treatment of DF injury.  相似文献   
127.
Oxidative stress is believed to play an important role in the pathogenesis of considerable number of complex diseases. The antioxidant enzymes catalase (CAT) and glutathione peroxidase (GPX) are important components of cell defense against oxidative stress, and polymorphisms in the genes which regulate their expression may contribute to differences in susceptibility of individuals to oxidative damage caused by reactive oxygen species. The aim of this study was to assess the distribution of CAT C-262T and GPX1 Pro198Leu genotypic variants in a Turkish population. Genotyping analyses of CAT and GPX1 were conducted in 250 unrelated, healthy volunteers by the PCR-RFLP assay. The allele frequencies were 0.784 (C) and 0.216 (T) for CAT and 0.636 (C) and 0.364 (T) for GPX1 Pro198Leu. The genotype frequencies were 0.632 (CC), 0.304 (CT), and 0.064 (TT) for CAT and 0.416 (CC), 0.44 (CT), and 0.144 (TT) for GPX1 Pro198Leu. The genotype frequencies did not deviate from Hardy–Weinberg equilibrium. The results are compared with those of other reported populations. They showed marked ethnic group differences.  相似文献   
128.
Autophagy is a homeostatic and evolutionarily conserved mechanism of self-digestion by which the cells degrade and recycle long-lived proteins and excess or damaged organelles.Autophagy is activated in response to both physiological and pathological stimuli including growth factor depletion,energy deficiency or the upregulation of Bcl-2 protein expression.A novel role of autophagy in various cancers has been proposed.Interestingly,evidence that supports both a positive and negative role of autophagy in the pathogenesis of cancer has been reported.As a tumor suppression mechanism,autophagy maintains genome stability,induces senescence and possibly autophagic cell death.On the other hand,autophagy participates in tumor growth and maintenance by supplying metabolic substrate,limiting oxidative stress,and maintaining cancer stem cell population.It has been proposed that the differential roles of autophagy in cancer are disease type and stage specific.In addition,substrate selectivity might be involved in carrying out the specific effect of autophagy in cancer,and represents one of the potential directions for future studies.  相似文献   
129.
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号