首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   145篇
  免费   10篇
  2023年   7篇
  2022年   6篇
  2021年   7篇
  2020年   7篇
  2019年   9篇
  2018年   7篇
  2017年   5篇
  2016年   9篇
  2015年   7篇
  2014年   11篇
  2013年   12篇
  2012年   17篇
  2011年   14篇
  2010年   5篇
  2009年   1篇
  2008年   5篇
  2007年   12篇
  2006年   2篇
  2005年   3篇
  2004年   2篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1995年   1篇
  1994年   2篇
  1992年   1篇
排序方式: 共有155条查询结果,搜索用时 31 毫秒
101.
The accumulation of high levels of adenosine in tumors activates A(2A) and A(2B) receptors on immune cells and inhibits their ability to suppress tumor growth. Deletion of adenosine A(2A) receptors (A(2A)ARs) has been reported to activate antitumor T cells, stimulate dendritic cell (DC) function, and inhibit angiogenesis. In this study, we evaluated the effects of intermittent intratumor injection of a nonselective adenosine receptor antagonist, aminophylline (AMO; theophylline ethylenediamine) and, for the first time to our knowledge, a selective A(2B)AR antagonist, ATL801. AMO and ATL801 slowed the growth of MB49 bladder and 4T1 breast tumors in syngeneic mice and reduced by 85% metastasizes of breast cancer cells from mammary fat to lung. Based on experiments with A(2A)AR(-/-) or adenosine A(2B) receptor(-/-) mice, the effect of AMO injection was unexpectedly attributed to A(2B)AR and not to A(2A)AR blockade. AMO and ATL801 significantly increased tumor levels of IFN-γ and the IFN-inducible chemokine CXCL10, which is a ligand for CXCR3. This was associated with an increase in activated tumor-infiltrating CXCR3(+) T cells and a decrease in endothelial cell precursors within tumors. Tumor growth inhibition by AMO or ATL801 was eliminated in CXCR3(-/-) mice and RAG1(-/-) mice that lack mature T cells. In RAG1(-/-) mice, A(2B)AR deletion enhanced CD86 expression on CD11b(-) DCs. Bone marrow chimera experiments demonstrated that CXCR3 and A(2B)AR expression on bone marrow cells is required for the antitumor effects of AMO. The data suggest that blockade of A(2B)ARs enhances DC activation and CXCR3-dependent antitumor responses.  相似文献   
102.
The physicochemical properties of tarhana soup produced with different dough treatments, fermentation times, and preservation methods were examined. Tarhana doughs were prepared with yogurt (control) or baker's yeast (Saccharomyces cerevisiae) and fermented for 3 days. Samples were taken at 24, 48, and 72 hr. Samples were then preserved via one of four methods: sun dried, dried in the shade, vacumn dried, and frozen. Frozen samples produced lower organic acid levels after 72 hr of fermentation in both control (0.68 g/100 g) and yeast (0.61 g/100 g) applications than samples that were dried (0.94 g/100 g control samples; 0.81 g/100 g samples with yeast). Increasing fermentation time resulted in a significant effect on the formation of organic acid in the tarhana (p < .01). At 72 hr of fermentation, total acidity increased 11%, 17%, and 23% for tarhana samples vacumn-dried, sun-dried, and dried in the shade, respectively. Preservation methods also affected the moisture, ash, crude protein, total acidity, pH, salt, fat, reducing sugar levels, and the sensory assestment of tarhana soup (p < .01). Sensory characteristics were not significantly affected by baker's yeast in any of the preservation methods used (p > .01). However, sensory scores for tarhana prepared from the samples dried in a sheltered area showed a reduction in color desireablilty as the fermentation time increased. The soup prepared from frozen tarhana (72 hr fermentation, with yeast) had the highest scores with respect to color, mouth feel, flavor, and overall acceptability. Vacuum-dried samples' scores in these areas were also high in comparison to the two other drying methods.  相似文献   
103.
Flux balance analysis and phenotypic data were used to provide clues to the relationships between the activities of gene products and the phenotypes resulting from the deletion of genes involved in respiratory function in Saccharomyces cerevisiae. The effect of partial or complete respiratory deficiency on the ethanol production and growth characteristics of hap4Δ/hap4Δ, mig1Δ/mig1Δ, qdr3Δ/qdr3Δ, pdr3Δ/pdr3Δ, qcr7Δ/qcr7Δ, cyt1Δ/cyt1Δ, and rip1Δ/rip1Δ mutants grown in microaerated chemostats was investigated. The study provided additional evidence for the importance of the selection of a physiologically relevant objective function, and it may improve quantitative predictions of exchange fluxes, as well as qualitative estimations of changes in intracellular fluxes. Ethanol production was successfully predicted by flux balance analysis in the case of the qdr3Δ/qdr3Δ mutant, with maximization of ethanol production as the objective function, suggesting an additional role for Qdr3p in respiration. The absence of similar changes in estimated intracellular fluxes in the qcr7Δ/qcr7Δ mutant compared to the rip1Δ/rip1Δ and cyt1Δ/cyt1Δ mutants indicated that the effect of the deletion of this subunit of complex III was somehow compensated for. Analysis of predicted flux distributions indicated self-organization of intracellular fluxes to avoid NAD+/NADH imbalance in rip1Δ/rip1Δ and cyt1Δ/cyt1Δ mutants, but not the qcr7Δ/qcr7Δ mutant. The flux through the glycerol efflux channel, Fps1p, was estimated to be zero in all strains under the investigated conditions. This indicates that previous strategies for improving ethanol production, such as the overexpression of the glutamate synthase gene GLT1 in a GDH1 deletion background or deletion of the glycerol efflux channel gene FPS1 and overexpression of GLT1, are unnecessary in a respiration-deficient background.  相似文献   
104.
105.
New nucleoside derivatives with nitrogen substitution at the C-6 position were prepared and screened initially for their in vitro anticancer bioactivity against human epithelial cancer cells (liver Huh7, colon HCT116, breast MCF7) by the NCI-sulforhodamine B assay. N6-(4-trifluoromethylphenyl)piperazine analog (27) exhibited promising cytotoxic activity. The compound 27 was more cytotoxic (IC50?=?1–4?μM) than 5-FU, fludarabine on Huh7, HCT116 and MCF7 cell lines. The most potent nucleosides (11, 13, 16, 18, 19, 21, 27, 28) were further screened for their cytotoxicity in hepatocellular cancer cell lines. The compound 27 demonstrated the highest cytotoxic activity against Huh7, Mahlavu and FOCUS cells (IC50?=?1, 3 and 1?μM respectively). Physicochemical properties, drug-likeness, and drug score profiles of the molecules showed that they are estimated to be orally bioavailable. The results pointed that the novel derivatives would be potential drug candidates.  相似文献   
106.
107.
A systems approach to biology requires a principled approach to pathway identification. In this study, the two nuclear petite yeast mutants K1Deltapet191a and K1Deltapet191ab and their parental industrial strain K1 were cultured in glucose-containing microaerobic chemostats. Exometabolomic profiles were used to infer the differences in the fermentation characteristics and respiration capacity of the strains. The ability of the metabolite measurement information to describe genetically different strains was investigated using a genome-scale yeast model. Flux balance analysis (FBA) of the model reveals that the objective function of minimal oxygen consumption enables the identification of the effect of genotypic differences when combined with the knowledge of the extracellular state of metabolism. The predicted decrease in oxygen consumption flux of K1Deltapet191a and K1Deltapet191ab strains with respect to the parental strain is about 80% and 100%, respectively, which coincides with the respiratory deficiencies of the strains. The expected increase in ethanol production rates in response to the decrease in the respiratory capacity was also predicted to be very close to the experimental values. This study shows the predictive power of the integrated analysis of genome-scale models with exometabolomic profiles, since accurate predictions could be made without any information about the respiration capacity of the strains. The FBA approach thereby enables identification of responsive pathways and so permits the elucidation of the genetic characteristics of strains in terms of expressed metabolite profiles.  相似文献   
108.
A new bacterial strain, displaying potent antimicrobial properties against gram-negative and gram-positive pathogenic bacteria, was isolated from food. Based on its phenotypical and biochemical properties as well as its 16S rRNA gene sequence, the bacterium was identified as Paenibacillus polymyxa and it was designated as strain OSY-DF. The antimicrobials produced by this strain were isolated from the fermentation broth and subsequently analyzed by liquid chromatography-mass spectrometry. Two antimicrobials were found: a known antibiotic, polymyxin E1, which is active against gram-negative bacteria, and an unknown 2,983-Da compound showing activity against gram-positive bacteria. The latter was purified to homogeneity, and its antimicrobial potency and proteinaceous nature were confirmed. The antimicrobial peptide, designated paenibacillin, is active against a broad range of food-borne pathogenic and spoilage bacteria, including Bacillus spp., Clostridium sporogenes, Lactobacillus spp., Lactococcus lactis, Leuconostoc mesenteroides, Listeria spp., Pediococcus cerevisiae, Staphylococcus aureus, and Streptococcus agalactiae. Furthermore, it possesses the physico-chemical properties of an ideal antimicrobial agent in terms of water solubility, thermal resistance, and stability against acid/alkali (pH 2.0 to 9.0) treatment. Edman degradation, mass spectroscopy, and nuclear magnetic resonance were used to sequence native and chemically modified paenibacillin. While details of the tentative sequence need to be elucidated in future work, the peptide was unequivocally characterized as a novel lantibiotic, with a high degree of posttranslational modifications. The coproduction of polymyxin E1 and a lantibiotic is a finding that has not been reported earlier. The new strain and associated peptide are potentially useful in food and medical applications.  相似文献   
109.
During development of colon cancer, Protein Kinase Cs (PKCs) are involved in regulation of many genes controlling several cellular mechanisms. Here, we examined the changes in cell adhesion molecules and PKCs for colorectal cancer progression. We identified that PKCs affected expression of EpCAM, claudins, tetraspanins. Treatment with low concentrations of PKC inhibitors resulted in decreased cell viability. In addition, immunoblotting and qRT-PCR analysis showed that apoptosis was inhibited while autophagy was induced by PKC inhibition in colon cancer cells. Furthermore, we observed decreased levels of intracellular Reactive Oxygen Species (ROS), lipid peroxidation and protein carbonyl, confirming the ROS-induced apoptosis. Taken together, our results reveal that PKC signalling modulates not only cell adhesion dynamics but also cell death-related mechanisms.

Abbreviations: PKC: Protein Kinase C; EpCAM: Epithelial cell adhesion molecule; FBS: fetal bovine serum; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide); CAM: cell adhesion molecule; ROS: reactive oxygen species  相似文献   

110.
Genome‐scale metabolic models are valuable tools for the design of novel strains of industrial microorganisms, such as Komagataella phaffii (syn. Pichia pastoris). However, as is the case for many industrial microbes, there is no executable metabolic model for K. phaffiii that confirms to current standards by providing the metabolite and reactions IDs, to facilitate model extension and reuse, and gene‐reaction associations to enable identification of targets for genetic manipulation. In order to remedy this deficiency, we decided to reconstruct the genome‐scale metabolic model of K. phaffii by reconciling the extant models and performing extensive manual curation in order to construct an executable model (Kp.1.0) that conforms to current standards. We then used this model to study the effect of biomass composition on the predictive success of the model. Twelve different biomass compositions obtained from published empirical data obtained under a range of growth conditions were employed in this investigation. We found that the success of Kp1.0 in predicting both gene essentiality and growth characteristics was relatively unaffected by biomass composition. However, we found that biomass composition had a profound effect on the distribution of the fluxes involved in lipid, DNA, and steroid biosynthetic processes, cellular alcohol metabolic process, and oxidation‐reduction process. Furthermore, we investigated the effect of biomass composition on the identification of suitable target genes for strain development. The analyses revealed that around 40% of the predictions of the effect of gene overexpression or deletion changed depending on the representation of biomass composition in the model. Considering the robustness of the in silico flux distributions to the changing biomass representations enables better interpretation of experimental results, reduces the risk of wrong target identification, and so both speeds and improves the process of directed strain development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号