首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1232篇
  免费   100篇
  国内免费   1篇
  1333篇
  2023年   4篇
  2022年   23篇
  2021年   33篇
  2020年   18篇
  2019年   31篇
  2018年   26篇
  2017年   26篇
  2016年   51篇
  2015年   83篇
  2014年   90篇
  2013年   89篇
  2012年   122篇
  2011年   128篇
  2010年   56篇
  2009年   64篇
  2008年   112篇
  2007年   80篇
  2006年   40篇
  2005年   55篇
  2004年   67篇
  2003年   30篇
  2002年   40篇
  2001年   9篇
  2000年   7篇
  1999年   11篇
  1998年   1篇
  1995年   1篇
  1994年   1篇
  1992年   4篇
  1991年   3篇
  1990年   4篇
  1989年   1篇
  1988年   7篇
  1987年   3篇
  1986年   2篇
  1980年   1篇
  1979年   2篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1972年   3篇
排序方式: 共有1333条查询结果,搜索用时 15 毫秒
31.
Despite the numerous metabolic studies on obesity, gender bias in obesity has rarely been investigated. Here, we report the metabolomic analysis of obesity by using leptin-deficient ob/ob mice based on the gender. Metabolomic analyses of urine and serum from ob/ob mice compared with those from C57BL/6J lean mice, based on the 1H NMR spectroscopy in combination with multivariate statistical analysis, revealed clear metabolic differences between obese and lean mice. We also identified 48 urine and 22 serum metabolites that were statistically significantly altered in obese mice compared to lean controls. These metabolites are involved in amino acid metabolism (leucine, alanine, ariginine, lysine, and methionine), tricarbocylic acid cycle and glucose metabolism (pyruvate, citrate, glycolate, acetoacetate, and acetone), lipid metabolism (cholesterol and carnitine), creatine metabolism (creatine and creatinine), and gut-microbiome-derived metabolism (choline, TMAO, hippurate, p-cresol, isobutyrate, 2-hydroxyisobutyrate, methylamine, and trigonelline). Notably, our metabolomic studies showed distinct gender variations. The obese male mice metabolism was specifically associated with insulin signaling, whereas the obese female mice metabolism was associated with lipid metabolism. Taken together, our study identifies the biomarker signature for obesity in ob/ob mice and provides biochemical insights into the metabolic alteration in obesity based on gender.  相似文献   
32.
33.
The construction of a dense genetic map for Vitis vinifera and its anchoring to a BAC-based physical map is described: it includes 994 loci mapped onto 19 linkage groups, corresponding to the basic chromosome number of Vitis. Spanning 1245 cM with an average distance of 1.3 cM between adjacent markers, the map was generated from the segregation of 483 single-nucleotide polymorphism (SNP)-based genetic markers, 132 simple sequence repeats (SSRs), and 379 AFLP markers in a mapping population of 94 F(1) individuals derived from a V. vinifera cross of the cultivars Syrah and Pinot Noir. Of these markers, 623 were anchored to 367 contigs that are included in a physical map produced from the same clone of Pinot Noir and covering 352 Mbp. On the basis of contigs containing two or more genetically mapped markers, region-dependent estimations of physical and recombinational distances are presented. The markers used in this study include 118 SSRs common to an integrated map derived from five segregating populations of V. vinifera. The positions of these SSR markers in the two maps are conserved across all Vitis linkage groups. The addition of SNP-based markers introduces polymorphisms that are easy to database, are useful for evolutionary studies, and significantly increase the density of the map. The map provides the most comprehensive view of the Vitis genome reported to date and will be relevant for future studies on structural and functional genomics and genetic improvement.  相似文献   
34.
We create and share a new red fluorophore, along with a set of strains, reagents and protocols, to make it faster and easier to label endogenous Caenorhabditis elegans proteins with fluorescent tags. CRISPR-mediated fluorescent labeling of C. elegans proteins is an invaluable tool, but it is much more difficult to insert fluorophore-size DNA segments than it is to make small gene edits. In principle, high-affinity asymmetrically split fluorescent proteins solve this problem in C. elegans: the small fragment can quickly and easily be fused to almost any protein of interest, and can be detected wherever the large fragment is expressed and complemented. However, there is currently only one available strain stably expressing the large fragment of a split fluorescent protein, restricting this solution to a single tissue (the germline) in the highly autofluorescent green channel. No available C. elegans lines express unbound large fragments of split red fluorescent proteins, and even state-of-the-art split red fluorescent proteins are dim compared to the canonical split-sfGFP protein. In this study, we engineer a bright, high-affinity new split red fluorophore, split-wrmScarlet. We generate transgenic C. elegans lines to allow easy single-color labeling in muscle or germline cells and dual-color labeling in somatic cells. We also describe a novel expression strategy for the germline, where traditional expression strategies struggle. We validate these strains by targeting split-wrmScarlet to several genes whose products label distinct organelles, and we provide a protocol for easy, cloning-free CRISPR/Cas9 editing. As the collection of split-FP strains for labeling in different tissues or organelles expands, we will post updates at doi.org/10.5281/zenodo.3993663  相似文献   
35.
Proteome analysis of early somatic embryogenesis in Picea glauca   总被引:3,自引:0,他引:3  
Forestry is a valuable natural resource for many countries. Rapid production of large quantities of genetically improved and uniform seedlings for restocking harvested lands is a key component of sustainable forest management programs. Clonal propagation through somatic embryogenesis has the potential to meet this need in conifers and can offer the added benefit of ensuring consistent seedling quality. Although in commercial use, mass production of conifers through somatic embryogenesis is relatively new and there are numerous biological unknowns regarding this complex developmental pathway. To aid in unravelling the embryo developmental process, two-dimensional electrophoresis was employed to quantitatively assess the expression levels of proteins across four stages of somatic embryo maturation in white spruce (0, 7, 21 and 35 days post abscisic acid treatment). Forty-eight differentially expressed proteins have been identified, which display a significant change in abundance as early as day 7 of embryo development. These proteins are involved in a variety of cellular processes, many of which have not previously been associated with embryo development. The identification of these proteins was greatly assisted by the availability of a substantial expressed sequence tag (EST) resource developed for white, sitka and interior spruce. The combined use of these spruce ESTs in conjunction with GenBank accessions for other plants improved the rate of protein identification from 38% to 62% when compared with GenBank alone using automated, high-throughput techniques. This underscores the utility of EST resources in a proteomic study of any species for which a genome sequence is unavailable.  相似文献   
36.
Zhang C  Tang J  Xie J  Zhang H  Li Y  Zhang J  Verpooten D  He B  Cao Y 《FEBS letters》2008,582(2):171-176
ICP34.5, encoded by herpes simplex virus 1, is a protein phosphatase 1 (PP1) regulatory subunit that mediates dephosphorylation of the alpha subunit of translation initiation factor 2 (eIF2alpha). However, the mechanism of its action remains poorly understood. Here, we show that amino acid substitutions in the arginine-rich motif have differential effects on ICP34.5 activity. The phenotypes parallel with viral protein synthesis and cytopathic effects in virus infected cells. Besides the consensus PP1 binding motif, the Arg-motif appears to enhance the interaction between ICP34.5 and PP1. These results suggest that concerted action between the PP1 binding domain and the effector domain of ICP34.5 is crucial for eIF2alpha dephosphorylation and viral protein synthesis.  相似文献   
37.
In Saccharomyces cerevisiae, the Yap family of basic leucine zipper (bZip) proteins contains eight members. The Yap family proteins are implicated in a variety of stress responses; among these proteins, Yap1 acts as a major regulator of oxidative stress responses. However, the functional roles of the remaining Yap family members are poorly understood. To elucidate the function of Yap2, we mined candidate target genes of Yap2 by proteomic analysis. Among the identified genes, FRM2 was previously identified as a target gene of Yap2, which confirmed the validity of our screening method. YNL134C and YDL124W were also identified as candidate Yap2 target genes. These genes were upregulated in strains overexpressing Yap2 and possess Yap2 target sequences in their promoter regions. Furthermore, chromatin immunoprecipitation assays showed that YNL134C and YDL124W have Yap2 binding motif. These data will help to elucidate the functional role of Yap2.  相似文献   
38.
Percutaneous osseointegrated implant technology provides a potential alternative to current socket prosthetics for individuals with limb loss. However, similar to other percutaneous devices, there remain concerns of periprosthetic infection. To understand this process of infection, bacterial isolates were collected and characterized from a sheep model of osseointegration. CSA-13, a novel cationic steroid antimicrobial, was used at the skin/implant interface in an attempt to reduce the rate of infection. Results indicated that in this application, normal flora and environmental organisms continued to colonize the skin/implant interface as well as cause infection in the presence of CSA-13. Two factors are believed to have contributed to this outcome: the delivery of CSA-13 and the lack of a skin seal at the skin/implant interface, which would create a biological barrier to infection.  相似文献   
39.
40.
Ischemia and simulated ischemic conditions cause intracellular Ca2+ overload in the myocardium. The relationship between ischemia injury and Ca2+ overload has not been fully characterized. The aim of the present study was to investigate the expression and characteristics of PLC isozymes in myocardial infarction-induced cardiac remodeling and heart failure. In normal rat heart tissue, PLC-delta1 (about 44 ng/mg of heart tissue) was most abundant isozymes compared to PLC-gamma1 (6.8 ng/mg) and PLC-beta1 (0.4 ng/mg). In ischemic heart and hypoxic neonatal cardiomyocytes, PLC-delta1, but not PLC-beta1 and PLC-gamma1, was selectively degraded, a response that could be inhibited by the calpain inhibitor, calpastatin, and by the caspase inhibitor, zVAD-fmk. Overexpression of the PLC-delta1 in hypoxic neonatal cardiomyocytes rescued intracellular Ca2+ overload by ischemic conditions. In the border zone and scar region of infarcted myocardium, and in hypoxic neonatal cardiomyocytes, the selective degradation of PLC-delta1 by the calcium sensitive proteases may play important roles in intracellular Ca2+ regulations under the ischemic conditions. It is suggested that PLC isozyme-changes may contribute to the alterations in calcium homeostasis in myocardial ischemia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号