首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2455篇
  免费   74篇
  国内免费   13篇
  2542篇
  2017年   13篇
  2015年   14篇
  2014年   13篇
  2013年   55篇
  2012年   59篇
  2011年   51篇
  2010年   64篇
  2009年   109篇
  2008年   80篇
  2007年   61篇
  2006年   57篇
  2005年   51篇
  2004年   50篇
  2003年   25篇
  2002年   15篇
  2001年   14篇
  2000年   17篇
  1999年   27篇
  1998年   36篇
  1997年   41篇
  1996年   36篇
  1995年   27篇
  1994年   23篇
  1993年   18篇
  1992年   34篇
  1990年   22篇
  1989年   22篇
  1988年   18篇
  1987年   21篇
  1986年   19篇
  1985年   19篇
  1984年   14篇
  1983年   18篇
  1981年   21篇
  1980年   14篇
  1979年   20篇
  1977年   15篇
  1971年   16篇
  1959年   49篇
  1958年   123篇
  1957年   137篇
  1956年   134篇
  1955年   149篇
  1954年   150篇
  1953年   119篇
  1952年   104篇
  1951年   98篇
  1950年   59篇
  1949年   14篇
  1948年   23篇
排序方式: 共有2542条查询结果,搜索用时 15 毫秒
991.
The contribution of pre-defoliation reserves and current assimilates to leaf and root growth was examined in Lolium perenne L. during regrowth after defoliation. Differential steady-state labelling with 13C (CO2 with δ13C = -0.0281 and -0.0088) and 15N (NO3? with 1.0 and 0.368 atom percentage, i.e. δ15N = 1.742 and 0.0052, respectively) was applied for 2 weeks after defoliation. Rapidly growing tissues were isolated, i.e. the basal elongation and maturation zones of the most rapidly expanding leaves and young root tips, with a biomass turnover rate > 1 d?1. C and N weights of the elongation zone showed a transient decline. The dry matter and C concentration in fresh biomass of leaf growth zones transiently decreased by up to 25% 2 d after defoliation, while the N concentration remained constant. This ‘dilution’ of growth zone C indicates a decreased net influx of carbohydrates relative to growth-related influx of water and N in expanding cells, immediately after defoliation. Recovery of the total C and N weights of the leaf elongation zone coincided with net incorporation of currently absorbed C and N, as shown by the kinetics of δ13C and atom percentage 15N in the growth zones after defoliation. C isotope discrimination (Δ13C) in leaf growth zones was about 23‰, 1–2‰ higher than the Δ in root tips. Δ15N in the leaf and root growth zones was 10±3‰. The leaf elongation zones (at 0–0.03 m from the tiller base) and the distant root tips (about 0.2 m from the base) exhibited similar kinetics of current C and N incorporation. The amount of pre-defoliation C and N in the growth zones, expressed as a fraction of total C and N, decreased from 1.0 to 0.5 at 3 (C) and 5 (N) d after defoliation, and to 0.1 at 5 (C) and 14 (N) d after defoliation. Thus, the dependence of growth zones on current assimilate supply was significant, and stronger for C than for N. The important roles of current assimilates (as compared to pre-defoliation reserves) and ‘dilution’ of dry matter in regrowth after defoliation are discussed in relation to the method of labelling and the functional and morphological heterogeneity of shoot tissues.  相似文献   
992.
993.
SYNOPSIS. Naegleria fowleri strains HB-1 and KUL, pathogenic for humans, Naegleria gruberi strain 1518/1e, and 3 strains (Vm1, LvH1, and LvH2) of Naegleria isolated from a body of water polluted with thermal effluents were compared in an attempt at specific identifications of the latter strains. The 3 environmental isolates were morphologically almost identical with N. fowleri and had almost the same temperature tolerance, although at 37 and 42 C the growth rates of LvH1 and LvH2 were higher than those of the human pathogen, N. fowleri, and of isolate Vm1, which was pathogenic for mice. Serologic examinations by indirect fluorescent antibody method revealed a very close relationship of the new isolates with the human pathogens. While Vm1 was indistinguishable from N. fowleri, LvH1 and LvH2 were not, when cross-absorbed antisera were used. Of all the strains examined, only the 2 LvH isolates were not inhibited by amphotericin B, while only N. gruberi was not inhibited by fumagillin. The cytopathic effect in Vero cell cultures suggested that the LvH strains could have a certain degree of virulence, although this was not confirmed by intranasal and intracerebral inoculations of mice. The cytopathic effects of the human pathogens and of the isolate pathogenic for mice were related to their virulence for mice. It is concluded that there exists an intermediate form between N. gruberi and N. fowleri, with a strong relationship to the latter species. We refer to such strains as nonpathogenic variants of N. fowleri. Further research is needed to reveal their place in the taxonomy.  相似文献   
994.
995.
SYNOPSIS. Heartbeat in the medicinal leech is paced by a neuraloscillator comprising two elemental oscillators whose activityis coordinated intersegmental coordinating fibers. The elementaloscillators each consist of a bilateral pair of heart interneuronslinked by reciprocal inhibitory synapses. The activity cycleof each elemental oscillator consists of alternating burstsof action potentials (plateau/burst phase) and periods inhibition(inactive phase). Oscillation ensues in the reciprocally inhibitorypairs because each neuron is able to escape from the inhibitionits contralateral partner and thus move on to the plateau/burstphase. We have identified and described membrane currents thatcontribute to oscillation and studied graded synaptic transmissionbetween the neurons, using discontinuous current clamp and switchingsingle electrode voltage clamp techniques. A hyperpolarization-activatedinward current, Ih, plays a major role in escape from inhibition,and Ca2+ currents produce plateau potentials that support burstformation and mediate graded synaptic transmission. To consolidate our knowledge and guide future research, we haveconstructed a first generation computer model of a neural oscillatorbased on reciprocal inhibition, using Hodgkin-Huxley equationsand a synaptic transfer model, derived from our biophysicalstudies, with Nodus software (De Schutter, 1989). This modelhas confirmed an important role for Ih in sustaining oscillationand has implicated a similarly important role for outward currents(particularly IA), which remain to be studied. Neural oscillatorsbased on reciprocal inhibition appear to be ubiquitous, andour studies, biophysical and computational, provide insightsinto how they may operate.  相似文献   
996.
997.
998.
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号