首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   226篇
  免费   24篇
  250篇
  2021年   6篇
  2020年   2篇
  2019年   3篇
  2018年   1篇
  2017年   2篇
  2016年   4篇
  2015年   6篇
  2014年   8篇
  2013年   13篇
  2012年   14篇
  2011年   14篇
  2010年   2篇
  2009年   2篇
  2008年   10篇
  2007年   8篇
  2006年   6篇
  2005年   7篇
  2004年   8篇
  2003年   6篇
  2002年   7篇
  2001年   7篇
  2000年   8篇
  1999年   9篇
  1998年   5篇
  1997年   11篇
  1996年   10篇
  1995年   2篇
  1994年   8篇
  1993年   7篇
  1992年   4篇
  1990年   5篇
  1989年   3篇
  1988年   4篇
  1987年   4篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1982年   3篇
  1978年   4篇
  1977年   2篇
  1976年   1篇
  1974年   1篇
  1973年   4篇
  1972年   5篇
  1971年   4篇
  1937年   1篇
  1936年   1篇
排序方式: 共有250条查询结果,搜索用时 15 毫秒
91.
92.
The reporter gene for chloramphenicol acetyltransferase (CAT) was introduced into white spruce (Picea glauca (Moench) Voss.) protoplasts by electroporation. CAT transient gene expression was increased by increasing the concentration of pCaMVCN plasmid and was affected by the level of the applied voltage. Highest CAT activities were obtained after electroporation with a pulse of 350V.cm–1 having an exponential decay constant of approximately 105ms. Linearized plasmid constructs gave much higher levels of CAT activity than circular plasmid. Attempts to use the Escherichia coli -glucuronidase gene (-GUS) as a marker gene revealed very high levels of -GUS-like activity in electroporated protoplasts. This activity was mainly due to a small molecule and may mask successful transformation since -GUS-like activity increased when plasmid DNA was present during electroporation.Abbreviations CAT chloramphenicol acetyltransferase - -GUS -glucuronidase - MUG 4-methyl umbelliferyl glucuronide - F microfarads NRCC No. 29150  相似文献   
93.
BACKGROUND: Laser scanning cytometry (LSC) is a new technology similar to flow cytometry but generates data from analysis of successive microscopic fields. Unlike its use in other applications, LSC-generated data are not random when used for tissue sections, but are dependent on the microanatomy of the tissue and the distribution and expression of the protein under investigation. For valid LSC analysis, the data generated requires the evaluation of a sufficient tissue area to ensure an accurate representation of expression within the tissue of interest. METHODS: In this report, we describe a simple and common sense method for determining the area of tissue required for sound LSC analysis by tracking the variation in the measure of target expression with increasing number of fields until it approaches zero. RESULTS: This approach was used to evaluate the expression of immunohistochemical markers with differing tissue distributions in liver (PMP70, CYP1A2, and Ki67 positive macrophages) and a colorectal adenocarcinoma (activated caspase-3 positive cells), which exhibited diffuse, regional (centrilobular), random, and irregular distribution patterns respectively. CONCLUSIONS: Analyses of these markers demonstrated that the amount of tissue area required to reach a steady measure of a parameter increased with increasing variability of the tissue distribution.  相似文献   
94.
Protein molecules are subjected to potentially denaturing fluid shear forces during processing and in circulation in the body. These complex molecules, involved in numerous biological functions and reactions, can be significantly impaired by molecular damage. There have been many studies on the effects of hydrodynamic shear forces on protein structure and function. These studies are reviewed and the implications to bioprocessing and pathophysiology of certain diseases are discussed.  相似文献   
95.
A library of chemokine antagonists has been synthesized using a combination of solid and solution-phase chemistry. Structures of known chemokine antagonists were used to produce a pharmacophore which served to guide monomer selection. Several combinations of monomers have resulted in providing novel chemokine antagonists which in some cases display dual chemokine receptor antagonism.  相似文献   
96.
Osteoporosis and vasculopathy are common after organ transplantation and have been largely attributed to the use of immunosuppressants. Osteoprotegerin (OPG) is produced by osteoblastic and arterial cells, and inhibits osteoclast functions by neutralizing receptor activator of NF-kappaB ligand (RANKL). Because OPG-deficient mice develop osteoporosis and arterial calcification, we assessed the effects of immunosuppressants on OPG and RANKL expression by human osteoblastic and coronary artery smooth muscle cells (CASMC). Cyclosporine A, rapamycin, and FK-506 decreased OPG mRNA and protein levels in undifferentiated marrow stromal cells (by 63, 44, and 68%, respectively, P < 0.001). All three immunosuppressants increased RANKL mRNA levels in these cells by 60 to 210%. In contrast to these effects on marrow stromal cells, rapamycin, which may be relatively bone-sparing, increased OPG mRNA and protein production (by 120%, P < 0.001) in mature osteoblastic cells. Cyclosporine A also decreased OPG mRNA and protein production (by 52%, P < 0.001) of CASMC. In conclusion, immunosuppressants decrease OPG mRNA and protein production and increase RANKL gene expression by marrow stromal cells, and cyclosporine suppresses OPG production in CASMC. These studies thus provide a potential mechanism for immunosuppressant-induced bone loss, and the propensity of cyclosporine A to cause vascular disease.  相似文献   
97.
There is increasing reliance on ecological models to improve our understanding of how ecological systems work, to project likely outcomes under alternative global change scenarios and to help develop robust management strategies. Two common types of spatiotemporally explicit ecological models are those focussed on biodiversity composition and those focussed on ecosystem function. These modelling disciplines are largely practiced separately, with separate literature, despite growing evidence that natural systems are shaped by the interaction of composition and function. Here we call for the development of new modelling approaches that integrate composition and function, accounting for the important interactions between these two dimensions, particularly under rapid global change. We examine existing modelling approaches that have begun to combine elements of composition and function, identifying their potential contribution to fully integrated modelling approaches. The development and application of integrated models of composition and function face a number of important challenges, including biological data limitations, system knowledge and computational constraints. We suggest a range of promising avenues that could help researchers overcome these challenges, including the use of virtual species, macroecological relationships and hybrid correlative‐mechanistic modelling. Explicitly accounting for the interactions between composition and function within integrated modelling approaches has the potential to improve our understanding of ecological systems, provide more accurate predictions of their future states and transform their management. Synthesis There is increasing attention from researchers and policy makers around the world on both assessing and projecting the state of the planet's biodiversity, its ecosystems and the essential services they provide to society. However, existing modelling approaches largely ignore the interactions between biodiversity composition and ecosystem function. We highlight the key challenges and potential solutions to developing integrated models of composition and function. Such models will require a new effort and focus from ecologists, yet the benefits are likely to be substantial, including better informing the management of natural systems at regional, national and international scales.  相似文献   
98.
This study aimed to develop a simple experimental system utilising bacterial cells to investigate the dose responses resulting from exposures to static magnetic flux densities ranging from 0.05 to 0.5 T on viability, bacterial metabolism and levels of DNA damage in Streptococcus pyogenes. Exposure of S. pyogenes to a field of 0.3 T at 24 degrees C under anaerobic conditions resulted in a significant (P < 0.05) decrease in growth rate, with an increased mean generation time of 199 +/- 6 min compared to the control cells at 165 +/- 6 min (P < 0.05). Conversely, exposure to magnetic fields of 0.5 T significantly accelerated the growth rate at 24 degrees C compared to control cells, with a decreased mean generation time of 147 +/- 4 min (P < 0.05). The patterns of metabolite release from cells incubated in phosphate buffered saline (PBS) at 24 degrees C and exposed to different magnetic flux densities (0.05-0.5 T) were significantly (P < 0.05) altered, compared to non-exposed controls. Concentrations of metabolites, with the exception of aspartic acid (r = 0.44), were not linearly correlated with magnetic flux density, with all other r < 0.20. Instead, "window" effects were observed, with 0.25-0.3 T eliciting the maximal release of the majority of metabolites, suggesting that magnetic fields of these strengths had significant impacts on metabolic homeostasis in S. pyogenes. The exposure of cells to 0.3 T was also found to significantly reduce the yield of 8-hydroxyguanine in extracted DNA compared to controls, suggesting some possible anti-oxidant protection to S. pyogenes at this field strength.  相似文献   
99.
Metagenomic based strategies have previously been successfully employed as powerful tools to isolate and identify enzymes with novel biocatalytic activities from the unculturable component of microbial communities from various terrestrial environmental niches. Both sequence based and function based screening approaches have been employed to identify genes encoding novel biocatalytic activities and metabolic pathways from metagenomic libraries. While much of the focus to date has centred on terrestrial based microbial ecosystems, it is clear that the marine environment has enormous microbial biodiversity that remains largely unstudied. Marine microbes are both extremely abundant and diverse; the environments they occupy likewise consist of very diverse niches. As culture-dependent methods have thus far resulted in the isolation of only a tiny percentage of the marine microbiota the application of metagenomic strategies holds great potential to study and exploit the enormous microbial biodiversity which is present within these marine environments.  相似文献   
100.
Vertical depth migrations into shallower waters at night by the chambered cephalopod Nautilus were first hypothesized early in the early 20(th) Century. Subsequent studies have supported the hypothesis that Nautilus spend daytime hours at depth and only ascend to around 200 m at night. Here we challenge this idea of a universal Nautilus behavior. Ultrasonic telemetry techniques were employed to track eleven specimens of Nautilus pompilius for variable times ranging from one to 78 days at Osprey Reef, Coral Sea, Australia. To supplement these observations, six remotely operated vehicle (ROV) dives were conducted at the same location to provide 29 hours of observations from 100 to 800 meter depths which sighted an additional 48 individuals, including five juveniles, all deeper than 489 m. The resulting data suggest virtually continuous, nightly movement between depths of 130 to 700 m, with daytime behavior split between either virtual stasis in the relatively shallow 160-225 m depths or active foraging in depths between 489 to 700 m. The findings also extend the known habitable depth range of Nautilus to 700 m, demonstrate juvenile distribution within the same habitat as adults and document daytime feeding behavior. These data support a hypothesis that, contrary to previously observed diurnal patterns of shallower at night than day, more complex vertical movement patterns may exist in at least this, and perhaps all other Nautilus populations. These are most likely dictated by optimal feeding substrate, avoidance of daytime visual predators, requirements for resting periods at 200 m to regain neutral buoyancy, upper temperature limits of around 25°C and implosion depths of 800 m. The slope, terrain and biological community of the various geographically separated Nautilus populations may provide different permutations and combinations of the above factors resulting in preferred vertical movement strategies most suited for each population.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号