首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   455篇
  免费   56篇
  2021年   4篇
  2019年   7篇
  2016年   10篇
  2015年   10篇
  2014年   14篇
  2013年   12篇
  2012年   27篇
  2011年   19篇
  2010年   8篇
  2009年   15篇
  2008年   19篇
  2007年   15篇
  2006年   10篇
  2005年   12篇
  2004年   10篇
  2003年   8篇
  2002年   7篇
  2001年   10篇
  2000年   9篇
  1999年   10篇
  1998年   7篇
  1997年   10篇
  1992年   4篇
  1991年   5篇
  1990年   9篇
  1989年   9篇
  1988年   6篇
  1987年   8篇
  1986年   12篇
  1985年   9篇
  1984年   13篇
  1983年   6篇
  1982年   4篇
  1981年   10篇
  1980年   5篇
  1978年   4篇
  1977年   7篇
  1975年   7篇
  1973年   6篇
  1972年   7篇
  1968年   5篇
  1965年   5篇
  1963年   5篇
  1961年   4篇
  1957年   5篇
  1956年   5篇
  1953年   5篇
  1950年   4篇
  1949年   4篇
  1941年   3篇
排序方式: 共有511条查询结果,搜索用时 15 毫秒
71.
72.
73.
74.
75.
Spiders are an important animal group, with a long history. Details of their origins remain limited, with little knowledge of their stem group, and no insights into the sequence of character acquisition during spider evolution. We describe a new fossil arachnid, Idmonarachne brasieri gen. et sp. nov. from the Late Carboniferous (Stephanian, ca 305–299 Ma) of Montceau-les-Mines, France. It is three-dimensionally preserved within a siderite concretion, allowing both laboratory- and synchrotron-based phase-contrast computed tomography reconstruction. The latter is a first for siderite-hosted fossils and has allowed us to investigate fine anatomical details. Although distinctly spider-like in habitus, this remarkable fossil lacks a key diagnostic character of Araneae: spinnerets on the underside of the opisthosoma. It also lacks a flagelliform telson found in the recently recognized, spider-related, Devonian–Permian Uraraneida. Cladistic analysis resolves our new fossil as sister group to the spiders: the spider stem-group comprises the uraraneids and I. brasieri. While we are unable to demonstrate the presence of spigots in this fossil, the recovered phylogeny suggests the earliest character to evolve on the spider stem-group is the secretion of silk. This would have been followed by the loss of a flagelliform telson, and then the ability to spin silk using spinnerets. This last innovation defines the true spiders, significantly post-dates the origins of silk, and may be a key to the group''s success. The Montceau-les-Mines locality has previously yielded a mesothele spider (with spinnerets). Evidently, Late Palaeozoic spiders lived alongside Palaeozoic arachnid grades which approached the spider condition, but did not express the full suite of crown-group autapomorphies.  相似文献   
76.
As part of their social sound repertoire, migrating humpback whales (Megaptera novaeangliae) perform a large variety of surface‐active behaviors, such as breaching and repetitive slapping of the pectoral fins and tail flukes; however, little is known about what factors influence these behaviors and what their functions might be. We investigated the potential functions of surface‐active behaviors in humpback whale groups by examining the social and environmental contexts in which they occurred. Focal observations on 94 different groups of whales were collected in conjunction with continuous acoustic monitoring, and data on the social and environmental context of each group. We propose that breaching may play a role in communication between distant groups as the probability of observing this behavior decreased significantly when the nearest whale group was within 4,000 m compared to beyond 4,000 m. Involvement in group interactions, such as the splitting of a group or a group joining with other whales, was an important factor in predicting the occurrence of pectoral, fluke, and peduncle slapping, and we suggest that they play a role in close‐range or within‐group communication. This study highlights the potentially important and diverse roles of surface‐active behaviors in the communication of migrating humpback whales.  相似文献   
77.
The involvement of the Nuclear distribution element-like (Ndel1; Nudel) protein in the recruitment of the dynein complex is critical for neurodevelopment and potentially important for neuronal disease states. The PDE4 family of phosphodiesterases specifically degrades cAMP, an important second messenger implicated in learning and memory functions. Here we show for the first time that Ndel1 can interact directly with PDE4 family members and that the interaction of Ndel1 with the PDE4D3 isoform is uniquely disrupted by elevation of intracellular cAMP levels. While all long PDE4 isoforms are subject to stimulatory PKA phosphorylation within their conserved regulatory UCR1 domain, specificity for release of PDE4D3 is conferred due to the PKA-dependent phosphorylation of Ser13 within the isoform-specific, unique amino-terminal domain of PDE4D3. Scanning peptide array analyses identify a common region on Ndel1 for PDE4 binding and an additional region that is unique to PDE4D3. The common site lies within the stutter region that links the second coiled-coil region to the unstable third coiled-coil regions of Ndel1. The additional binding region unique to PDE4D3 penetrates into the start of the third coiled-coil region that can undergo tail-to-tail interactions between Ndel1 dimers to form a 4 helix bundle. We demonstrate Ndel1 self-interaction in living cells using a BRET approach with luciferase- and GFP-tagged forms of Ndel1. BRET assessed Ndel1–Ndel1 self-interaction is amplified through the binding of PDE4 isoforms. For PDE4D3 this effect is ablated upon elevation of intracellular cAMP due to PKA-mediated phosphorylation at Ser13, while the potentiating effects of PDE4B1 and PDE4D5 are resistant to cAMP elevation. PDE4D long isoforms and Ndel1 show a similar sub-cellular distribution in hippocampus and cortex and locate to post-synaptic densities. We show that Ndel1 sequesters EPAC, but not PKA, in order to form a cAMP signalling complex. We propose that a key function of the Ndel1 signalling scaffold is to signal through cAMP by sequestering EPAC, whose activity may thus be specifically regulated by sequestered PDE4 that also stabilizes Ndel1–Ndel1 self-interaction. In the case of PDE4D3, its association with Ndel1 is dynamically regulated by PKA input through its ability to phosphorylate Ser13 in the unique N-terminal region of this isoform, triggering the specific release of PDE4D3 from Ndel1 when cAMP levels are elevated. We propose that Ser13 may act as a redistribution trigger in PDE4D3, allowing it to dynamically re-shape cAMP gradients in distinct intracellular locales upon its phosphorylation by PKA.  相似文献   
78.
The mammalian target of rapamycin (mTOR) signalling pathway is implicated in the pathogenesis of a number of cancers and inherited hamartoma syndromes which have led to mTOR inhibitors, such as rapamycin, being tested in clinical trials. Knowledge of the mTOR pathway is rapidly expanding. This review provides an update on the most recent additions to the mTOR pathway with particular emphasis on mTORC1 signalling. mTORC1 signalling is classically known for its role in regulating cell growth and proliferation through modulation of protein synthesis. Recent research has identified novel mTORC1 cell signalling mechanisms that modulate mitochondrial biogenesis, hypoxia signalling and cell cycle progression and uncovered novel mTORC1 targets; YY1, HIF and SGK1. It is unsurprising that regulation of mTORC1 is multifaceted with many positive and negative signalling inputs. We discuss the recent advances that have been made to determine the upstream mechanisms that control mTORC1 through hypoxia, energy sensing and nutrient signalling. Also discussed are current findings that have unravelled a series of novel mTORC1-associated proteins that directly control the activity of mTORC1 and include PRAS40, FKBP38, Rag GTPases and RalA.  相似文献   
79.
Alpha 7 nicotinic acetylcholine receptor (α7 nAChR) agonists are promising therapeutic candidates for the treatment of cognitive impairment associated with a variety of disorders including Alzheimer’s disease and schizophrenia. Alpha 7 nAChRs are expressed in brain regions associated with cognitive function, regulate cholinergic neurotransmission and have been shown to be down regulated in both schizophrenia and Alzheimer’s disease. Herein we report a novel, potent small molecule agonist of the alpha 7 nAChR, SEN12333/WAY-317538. This compound is a selective agonist of the α7 nAChR with excellent in vitro and in vivo profiles, excellent brain penetration and oral bioavailability, and demonstrates in vivo efficacy in multiple behavioural cognition models. The SAR and biological evaluation of this series of compounds are discussed.  相似文献   
80.

Background  

Homologous recombination mediated by the λ-Red genes is a common method for making chromosomal modifications in Escherichia coli. Several protocols have been developed that differ in the mechanisms by which DNA, carrying regions homologous to the chromosome, are delivered into the cell. A common technique is to electroporate linear DNA fragments into cells. Alternatively, DNA fragments are generated in vivo by digestion of a donor plasmid with a nuclease that does not cleave the host genome. In both cases the λ-Red gene products recombine homologous regions carried on the linear DNA fragments with the chromosome. We have successfully used both techniques to generate chromosomal mutations in E. coli K-12 strains. However, we have had limited success with these λ-Red based recombination techniques in pathogenic E. coli strains, which has led us to develop an enhanced protocol for recombineering in such strains.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号