首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   149篇
  免费   11篇
  2023年   2篇
  2021年   3篇
  2020年   2篇
  2019年   3篇
  2016年   3篇
  2015年   5篇
  2014年   3篇
  2013年   6篇
  2012年   4篇
  2011年   5篇
  2010年   2篇
  2009年   6篇
  2008年   6篇
  2007年   7篇
  2006年   2篇
  2005年   2篇
  2004年   9篇
  2003年   7篇
  2002年   1篇
  2001年   3篇
  2000年   4篇
  1999年   5篇
  1998年   4篇
  1997年   5篇
  1996年   3篇
  1995年   4篇
  1994年   1篇
  1993年   1篇
  1992年   5篇
  1991年   4篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   4篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1982年   3篇
  1981年   3篇
  1979年   2篇
  1977年   4篇
  1976年   1篇
  1975年   1篇
  1974年   3篇
  1973年   3篇
  1970年   1篇
  1969年   4篇
  1966年   1篇
  1960年   1篇
排序方式: 共有160条查询结果,搜索用时 15 毫秒
51.
The in vitro phosphorylation of actin from rat cerebral cortex   总被引:5,自引:0,他引:5  
Actin was phosphorylated by a cyclic AMP-stimulated protein kinase in a lysed synaptosomal fraction incubated with [gamma-32P]ATP, while calcium had no effect on endogenous labeling of the protein. Incubation of an intact synaptosomal fraction with 32P-inorganic phosphate did not lead to any detectable phosphorylation of actin in the presence or absence of dibutyryl-cyclic AMP, or chemical depolarization. It is suggested that actin is not phosphorylated in the physiologically relevant intact synaptosomes but gains access to protein kinases on lysis.  相似文献   
52.
53.
In recent years, the enzyme Ca2+/calmodulin-stimulated protein kinase II1 (CaM-PK II) as attracted a great deal of interest. CaM-PK II is the most abundant calmodulin-stimulated protein kinase in brain, where it is particularly enriched in neurons (Ouimet et al., 1984; Erondu and Kennedy, 1985; Lin et al., 1987; Scholz et al., 1988). Neuronal CaM-PK II has been suggested to be involved in several phenomena associated with synaptic plasticity (Lisman and Goldring, 1988; Kelly, 1992), including long-term potentiation (Malinow et al., 1988; Malenka et al.,1989), neurotransmission (Nichols et al., 1990; Siekevitz, 1991), and learning (for review, see Rostas, 1991). This enzyme has also been postulated to be selectively vulnerable in several pathological condition, including epilepsy/kindling (Bronstein et al.,1990; Wu et al., 1990), cerebral ischemia (Taft et al., 1988), and organophosphorus toxicity (Abou-Donia and Lapadula, 1990).  相似文献   
54.
A unique feature of neuronal calcium/calmodulin-stimulated protein kinase II (CaM-PK II) is its autophosphorylation. A number of sites are involved and, depending on the in vitro conditions used, three serine and six threonine residues have been tentatively identified as autophosphorylation sites in the alpha subunit. These sites fall into three categories. Primary sites are phosphorylated in the presence of calcium and calmodulin, but under limiting conditions of temperature, ATP, Mg2+, or time. Secondary sites are phosphorylated in the presence of calcium and calmodulin under nonlimiting conditions. Autonomous sites are phosphorylated in the absence of calcium and calmodulin after initial phosphorylation of Thr-286. Mechanisms that lead to a decrease in CaM-PK II autophosphorylation include the thermolability of the enzyme and the activity of protein phosphatases. A range of in vitro inhibitors of CaM-PK II autophosphorylation have recently been identified. Autophosphorylation of CaM-PK II leads to a number of consequences in vitro, including generation of autonomous activity and subcellular redistribution, as well as alterations in conformation, activity, calmodulin binding, substrate specificity, and susceptibility to proteolysis. It is established that CaM-PK II is autophos-phorylated in neuronal cells under basal conditions. Depolarization and/or activation of receptors that lead to an increase in intracellular calcium induces a marked rise in the autophosphorylation of CaM-PK II in situ. The incorporation of phosphate is mainly found on Thr-286, but other sites are also phosphorylated at a slower rate. One consequence of the increase in CaM-PK II autophosphorylation in situ is an increase in the level of autonomous kinase activity. It is proposed that the formation of an autonomous enzyme is only one of the consequences of CaM-PK II autophosphorylation in situ and that some of the other consequences observed in vitro will also be seen. CaM-PK II is involved in the control of neuronal plasticity, including neurotransmitter release and long-term modulation of postreceptor events. In order to understand the function of CaM-PK II, it will be essential to ascertain more fully the mechanisms of its autophosphorylation in situ, including especially the sites involved, the consequences of this autophosphorylation for the kinase activity, and the relationships between the state of CaM-PK II autophosphorylation and the physiological events within neurons.  相似文献   
55.
Using 51Cr-labelled P-815 mastocytoma cells as target cells and CS7BL/6 spleen cells sensitized against DBA/2 antigens as effector cells, it is shown that the variation in the observed specific 51Cr release over a broad range of experimental conditions can be explained on the basis of a simple physical model of the interaction process. The model assumes that a target cell can be destroyed only after contact with an effector cell, contact takes place on a random basis, one contact is sufficient, and that one effector cell can kill several targets with unchanged efficiency. The fraction of target cells destroyed (f) depends only on the incubation time (t), the number of effector cells (n) and a constant interaction probability (δ). Thus f = 1 ? e?nδt. However, the experimental measurement, the fraction of 51Cr specifically released into the supernatant during the assay, may not be the same as the fraction of target cells destroyed because it takes considerable time for the releasable 51Cr to be released from a damaged target cell. This can be overcome experimentally by following the standard 37 °C incubation with a further incubation at 45 °C during which there are no new lytic events but all previously damaged target cells release the remainder of their releasable 51Cr. The model enables one to obtain accurate measurements of relative effector cell frequency over a broad range of experimental conditions.  相似文献   
56.
Tyrosine hydroxylase phosphorylation: regulation and consequences   总被引:7,自引:0,他引:7  
The rate-limiting enzyme in catecholamine synthesis is tyrosine hydroxylase. It is phosphorylated at serine (Ser) residues Ser8, Ser19, Ser31 and Ser40 in vitro, in situ and in vivo. A range of protein kinases and protein phosphatases are able to phosphorylate or dephosphorylate these sites in vitro. Some of these enzymes are able to regulate tyrosine hydroxylase phosphorylation in situ and in vivo but the identity of the kinases and phosphatases is incomplete, especially for physiologically relevant stimuli. The stoichiometry of tyrosine hydroxylase phosphorylation in situ and in vivo is low. The phosphorylation of tyrosine hydroxylase at Ser40 increases the enzyme's activity in vitro, in situ and in vivo. Phosphorylation at Ser31 also increases the activity but to a much lesser extent than for Ser40 phosphorylation. The phosphorylation of tyrosine hydroxylase at Ser19 or Ser8 has no direct effect on tyrosine hydroxylase activity. Hierarchical phosphorylation of tyrosine hydroxylase occurs both in vitro and in situ, whereby the phosphorylation at Ser19 increases the rate of Ser40 phosphorylation leading to an increase in enzyme activity. Hierarchical phosphorylation depends on the state of the substrate providing a novel form of control of tyrosine hydroxylase activation.  相似文献   
57.
The tyrosine phosphatase inhibitor BpV(phen) stimulated a concentration-dependent increase of phospholipase C (PLC) activity in bovine adrenal medullary chromaffin cells. This response was accompanied by an increase in PLCgamma1 tyrosine phosphorylation and its cytosketetal translocation. Insulin, at high concentrations, stimulated PLC activity to a similar extent as BpV(phen), a response that was also accompanied by an increase in PLCgamma1 translocation but not its tyrosine phosphorylation. BpV(phen) strongly enhanced the insulin-stimulated increase in PLC activity and caused a small rise in PLCgamma1 translocation above that seen with insulin alone. Despite the synergistic rise in activity PLCgamma1 tyrosine phosphorylation did not increase beyond that seen with BpV(phen) alone. These results indicate that PLCgamma1 activation in chromaffin cells may be more closely associated with its cytoskeletal translocation than its tyrosine phosphorylation although other factors may also be important for activation of enzyme activity.  相似文献   
58.
Abstract: Histamine stimulation of bovine adrenal medullary cells rapidly activated phospholipase C. [3H]Inositol 1,4,5-trisphosphate [[3H]Ins(1,4,5)P3] levels were transiently increased (200% of basal values between 1 and 5 s) before declining to a new steady-state level of ~140% of basal values. [3H]Inositol 1,4-bisphosphate [[3H]Ins(1,4)P2] content increased to a maximal and maintained level of 250% of basal values after 1 s, whereas levels of [3H]inositol 1,3,4-trisphosphate [[3H]-Ins(1,3,4)P3], [3H]inositol 1,3-bisphosphate, and [3H]-inositol 4-monophosphate ([3H]Ins4P) increased more slowly. The rapid responses were not reduced by the removal of extracellular Ca2+, but they were no longer sustained over time. The turnover rates of selected inositol phosphate isomers have been estimated in the intact cell. [3H]Ins(1,4,5)P3 was rapidly metabolized (t1/2 of 11 s), whereas the other isomers were metabolized more slowly, with t1/2 values of 113, 133, 104, and 66 s for [3H]Ins(1,3,4)P3, [3H]Ins(1,4)P2, an unresolved mixture of [3H]inositol 1- and 3-monophosphate ([3H]Ins1/3P), and [3H]Ins4P, respectively. The calculated turnover rate of [3H]Ins(1,4,5)P3 was sufficient to account for the turnover of the combination of both [3H]Ins(1,4)P2 and [3H]Ins(1,3,4)P3 but not that of [3H]Ins1/3P or [3H]Ins4P. These observations demonstrate that histamine stimulation of these cells results in a complex Ca2+-dependent and -independent response that may involve the hydrolysis of inositol phospholipids in addition to phosphatidylinositol 4,5-bisphosphate.  相似文献   
59.
Both ascorbic acid and copper were strong prooxidants in the oxidation of linoleate in a buffered (pH 7.0) aqueous dispersion at 37 degrees C. Minimum concentrations at which catalytic activity was detected were 1.3 x 10(-7) m for copper and 1.8 x 10(-6) m for ascorbic acid. For concentrations up to 10(-3) m, the increase in rate of oxidation with increase in concentration of catalyst was greater for ascorbic acid than for copper. Ascorbic acid had maximum catalytic activity at 2.0 x 10(-3) m, but was still prooxidant at the highest concentration tested (5.0 x 10(-2) m). Dehydroascorbic acid was a weaker prooxidant than ascorbic acid. Further degradation products of ascorbic acid were not prooxidant. In early stages of the oxidation autocatalytic behavior was observed with copper, but not with ascorbic acid. Ascorbic acid functioned as a true catalyst, i.e., it accelerated the reaction but it was not oxidized simultaneously with the linoleate. It is proposed that the dehydroascorbic acid radical initiates the linoleate oxidation reaction.  相似文献   
60.
Depolarization of synaptosomes is known to cause a calcium-dependent increase in the phosphorylation of a number of proteins. It was the aim of this study to determine which protein kinases are activated on depolarization by analyzing the incorporation of 32Pi into synaptosomal phosphoproteins and phosphopeptides. The following well-characterized phosphoproteins were chosen for study: phosphoprotein "87K," synapsin Ia and Ib, phosphoproteins IIIa and IIIb, the catalytic subunits of calmodulin kinase II, and the B-50 protein. Each was initially identified as a phosphoprotein in lysed synaptosomes after incubation with [gamma-32P]ATP. Mobility on two-dimensional polyacrylamide gels and phosphorylation by specific protein kinases were the primary criteria used for identification. A technique was developed that allowed simultaneous analysis of the phosphopeptides derived from all of these proteins. Phosphopeptides were characterized in lysed synaptosomes after activating cyclic AMP-, calmodulin-, and phospholipid-stimulated protein kinases in the presence of [gamma-32P]ATP. Phosphoproteins labelled in intact synaptosomes after incubation with 32Pi were then compared with those seen after ATP-labelling of lysed synaptosomes. As expected from previous work, phosphoprotein "87K," and synapsin Ia and Ib were labelled, but for the first time, phosphoproteins IIIa, IIIb, and the B-50 protein were identified as being labelled in intact synaptosomes; the calmodulin kinase II subunits were hardly phosphorylated. From a comparison of the phosphopeptide profiles it was found that cyclic AMP-, calmodulin-, and phospholipid-stimulated protein kinases are all active in intact synaptosomes and their activity is dependent on extrasynaptosomal calcium. The activation of cyclic AMP-stimulated protein kinases in intact synaptosomes was confirmed by the addition of dibutyryl cyclic AMP and theophylline which specifically increased the labelling of phosphopeptides in synapsin Ia and Ib and in phosphoproteins IIIa and IIIb. On depolarization of intact synaptosomes, a number of phosphopeptides showed increased labelling and the pattern suggested that cyclic AMP-, calmodulin-, and phospholipid-stimulated protein kinases were all activated. No new peptides were phosphorylated, suggesting that depolarization simply increased the activity of already active protein kinases and that there was no depolarization-specific increase in protein phosphorylation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号