首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54篇
  免费   11篇
  2018年   2篇
  2017年   1篇
  2015年   4篇
  2014年   2篇
  2013年   5篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2005年   7篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  1998年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1990年   4篇
  1989年   2篇
  1988年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1980年   1篇
  1979年   2篇
  1975年   1篇
  1974年   2篇
  1973年   2篇
  1971年   2篇
  1970年   2篇
  1969年   1篇
排序方式: 共有65条查询结果,搜索用时 234 毫秒
11.

Introduction  

Intraarticular administration of autologous conditioned serum (ACS) recently demonstrated some clinical effectiveness in treatment of osteoarthritis (OA). The current study aims to evaluate the in vitro effects of ACS on cartilage proteoglycan (PG) metabolism, its composition and the effects on synovial fluid (SF) cytokine levels following intraarticular ACS administration.  相似文献   
12.
13.
Neutrophil associated lung injury is identified with a variety of local and systemic priming insults. In vitro studies have shown that TNF-alpha mediated suppression of neutrophil apoptosis is due to the secretion of interleukin-8 (IL-8), a human chemokine shown to alter neutrophil chemotaxis. Our initial in vitro antibody neutralization studies with neutrophil chemotactic proteins, keratinocyte-derived chemokine (KC) and macrophage inflammatory protein-2alpha (MIP-2alpha), mouse IL-8 homologues, indicate that MIP-2alpha but not KC appears to mediate TNF-alpha suppression of mouse neutrophil apoptosis. Therefore, we hypothesized that in vivo neutralization of KC or MIP-2alpha during an initial priming insult would produce differential effects on the extent of lung injury by restoring normal neutrophil apoptotic function. To assess this, mice were hemorrhaged followed with septic challenge at 24 h. Antibody against KC or MIP-2alpha or a nonspecific IgG was given during resuscitation immediately following hemorrhage. Anti-MIP-2alpha treatment resulted in a significant reduction in lung tissue IL-6 and myeloperoxidase levels. Percentage of neutrophil apoptosis increased significantly in the anti-KC group. Tissue and plasma KC and MIP-2alpha were reduced in their respective treatment groups. These data suggest that KC and MIP-2alpha differ in their mediation of neutrophil function (apoptosis and chemotaxis) and contribution to the pathogenesis of lung injury following hemorrhage subsequent to sepsis.  相似文献   
14.
Mouse primordial germ cells (PGCs) erase global DNA methylation (5mC) as part of the comprehensive epigenetic reprogramming that occurs during PGC development. 5mC plays an important role in maintaining stable gene silencing and repression of transposable elements (TE) but it is not clear how the extensive loss of DNA methylation impacts on gene expression and TE repression in developing PGCs. Using a novel epigenetic disruption and recovery screen and genetic analyses, we identified a core set of germline-specific genes that are dependent exclusively on promoter DNA methylation for initiation and maintenance of developmental silencing. These gene promoters appear to possess a specialised chromatin environment that does not acquire any of the repressive H3K27me3, H3K9me2, H3K9me3 or H4K20me3 histone modifications when silenced by DNA methylation. Intriguingly, this methylation-dependent subset is highly enriched in genes with roles in suppressing TE activity in germ cells. We show that the mechanism for developmental regulation of the germline genome-defence genes involves DNMT3B-dependent de novo DNA methylation. These genes are then activated by lineage-specific promoter demethylation during distinct global epigenetic reprogramming events in migratory (~E8.5) and post-migratory (E10.5-11.5) PGCs. We propose that genes involved in genome defence are developmentally regulated primarily by promoter DNA methylation as a sensory mechanism that is coupled to the potential for TE activation during global 5mC erasure, thereby acting as a failsafe to ensure TE suppression and maintain genomic integrity in the germline.  相似文献   
15.
16.
17.
The activated fibroblast growth factor receptor (FGFR)-1 is phosphorylated on five tyrosine residues outside the catalytic site. Although one such residue, Tyr730, is flanked by potential binding sites for phosphotyrosine-interacting molecules, a physiological role for this region is still controversial. We report that a cell-permeant phosphopeptide mimic of this site, FGFR730(p)Y, inhibits FGF-mediated mitogenesis in cells with no effect on responses stimulated by other growth factors. A similar phosphopeptide corresponding to the phospholipase Cgamma binding site on the receptor had no effect on the mitogenic response. The FGFR730(p)Y peptide did not inhibit phosphorylation of p90/FRS2 or Erk, suggesting that it does not act by inhibiting the Erk-kinase cascade. However, the FGFR730(p)Y peptide bound Shc in a manner requiring both phosphorylated tyrosine and a putative PTB domain binding determinant. These data suggest that the peptide might inhibit mitogenesis by competing with the corresponding site on the FGFR for the ability to bind SHC.  相似文献   
18.
Survival of R+Escherichia coli in sea Water   总被引:6,自引:5,他引:1       下载免费PDF全文
The survival of Escherichia coli strains in sea water appears not to be affected by the possession of an R(+) factor. Sea water induces no detectable curing of R(+)E. coli.  相似文献   
19.
Transformation of R-factor RP4 specifying resistance to ampicillin, kanamycin, and tetracycline from Escherichia coli to Rhizobium trifolii is reported. Partially purified RP4 deoxyribonucleic acid (DNA) of the donor strain E. coli J5-3 that carried the R-factor was prepared by the lysozyme-ethylenediaminetetraacetic acid-Triton X-100 procedure and was used in transformation experiments with R. trifolii as recipient. The frequency of transformation of the R-factor into R. trifolii was 1.3 × 10−4. Dye buoyant density and sucrose gradient centrifugation of R. trifolii DNA showed that the expression of the specified drug resistance of RP4 by R. trifolii was accompanied by the acquisition of an extrachromosomal, satellite DNA component which has indistinguishable physical properties from the R-factor in the donor strain. The significance of the transformation is discussed.  相似文献   
20.

Introduction

This study aimed to evaluate whether profiles of several soluble mediators in synovial fluid and cartilage tissue are pathology-dependent and how their production is related to in vitro tissue formation by chondrocytes from diseased and healthy tissue.

Methods

Samples were obtained from donors without joint pathology (n = 39), with focal defects (n = 65) and osteoarthritis (n = 61). A multiplex bead assay (Luminex) was performed measuring up to 21 cytokines: Interleukin (IL)-1α, IL-1β, IL-1RA, IL-4, IL-6, IL-6Rα, IL-7, IL-8, IL-10, IL-13, tumor necrosis factor (TNF)α, Interferon (IFN)γ, oncostatin M (OSM), leukemia inhibitory factor (LIF), adiponectin, leptin, monocyte chemotactic factor (MCP)1, RANTES, basic fibroblast growth factor (bFGF), hepatocyte growth factor (HGF), vascular growth factor (VEGF).

Results

In synovial fluid of patients with cartilage pathology, IL-6, IL-13, IFNγ and OSM levels were higher than in donors without joint pathology (P ≤0.001). IL-13, IFNγ and OSM were also different between donors with cartilage defects and OA (P <0.05). In cartilage tissue from debrided defects, VEGF was higher than in non-pathological or osteoarthritic joints (P ≤0.001). IL-1α, IL-6, TNFα and OSM concentrations (in ng/ml) were markedly higher in cartilage tissue than in synovial fluid (P <0.01). Culture of chondrocytes generally led to a massive induction of most cytokines (P <0.001). Although the release of inflammatory cytokines was also here dependent on the pathological condition (P <0.001) the actual profiles were different from tissue or synovial fluid and between non-expanded and expanded chondrocytes. Cartilage formation was lower by healthy unexpanded chondrocytes than by osteoarthritic or defect chondrocytes.

Conclusions

Several pro-inflammatory, pro-angiogenic and pro-repair cytokines were elevated in joints with symptomatic cartilage defects and/or osteoarthritis, although different cytokines were elevated in synovial fluid compared to tissue or cells. Hence a clear molecular profile was evident dependent on disease status of the joint, which however changed in composition depending on the biological sample analysed. These alterations did not affect in vitro tissue formation with these chondrocytes, as this was at least as effective or even better compared to healthy chondrocytes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号