首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3568篇
  免费   376篇
  2021年   53篇
  2020年   40篇
  2019年   39篇
  2018年   36篇
  2017年   53篇
  2016年   76篇
  2015年   114篇
  2014年   147篇
  2013年   160篇
  2012年   226篇
  2011年   200篇
  2010年   129篇
  2009年   116篇
  2008年   162篇
  2007年   213篇
  2006年   168篇
  2005年   135篇
  2004年   141篇
  2003年   146篇
  2002年   114篇
  2001年   67篇
  2000年   58篇
  1999年   48篇
  1998年   57篇
  1997年   43篇
  1996年   43篇
  1995年   39篇
  1994年   39篇
  1993年   35篇
  1992年   60篇
  1991年   32篇
  1990年   49篇
  1989年   46篇
  1988年   58篇
  1987年   38篇
  1986年   34篇
  1985年   41篇
  1984年   49篇
  1983年   31篇
  1982年   22篇
  1981年   42篇
  1980年   26篇
  1979年   34篇
  1978年   31篇
  1977年   24篇
  1976年   25篇
  1975年   21篇
  1974年   37篇
  1972年   18篇
  1968年   17篇
排序方式: 共有3944条查询结果,搜索用时 281 毫秒
991.
Aim  The niche hypothesis could explain why some species introduced to new locations reach higher densities than in their native range: it posits that the new environment provides more abundant or higher quality resources or habitat, a more suitable physical environment or both. We investigate whether 11 bird species occur at higher densities in their introduced range than in their native range and whether the differences can be explained by the availability of preferred habitat or the suitability of climatic conditions in their introduced range relative to their native range.
Location  South Island, New Zealand (the introduced range); UK (the native range).
Methods  We first develop a series of models that accurately predict the density of 11 bird species at 54 UK farmland sites, which are closely matched to our New Zealand sites, from habitat and climatic variables. We then use these models to predict the density of the 11 species at 54 New Zealand farmland sites and compare the predicted and observed values.
Results  Actual densities at New Zealand sites were on average (median) 22 times (range: 1–6361) higher than predicted from the UK models and similarly higher than actually observed at comparable UK sites. Habitat and climatic variables can accurately predict bird densities in the UK but grossly underestimate densities for all species except Turdus merula in New Zealand.
Main conclusions  These findings indicate that factors other than the measured habitat and climatic variables must differ between the two regions and explain the much higher densities of New Zealand birds. We suggest that introduced birds, other than T. merula , in New Zealand may still experience enhanced niche opportunities due to greater availability of higher quality resources within habitats, release from natural enemy regulation, less exposure to extreme weather events, particularly during winter, or some combination of these processes.  相似文献   
992.
The development of insulin resistance in the obese is associated with chronic, low‐grade inflammation. We aimed to identify novel links between obesity, insulin resistance and the inflammatory response by comparing C57BL/6 with type I interleukin‐1 receptor knockout (IL‐1RI?/?) mice, which are protected against diet‐induced insulin resistance. Mice were fed a high‐fat diet for 16 wk. Insulin sensitivity was measured and proteomic analysis was performed on adipose, hepatic and skeletal muscle tissues. Despite an equal weight gain, IL‐1RI?/? mice had lower plasma glucose, insulin and triacylglycerol concentrations, compared with controls, following dietary treatment. The higher insulin sensitivity in IL‐1RI?/? mice was associated with down‐regulation of antioxidant proteins and proteasomes in adipose tissue and hepatic soluble epoxide hydrolase, consistent with a compromised inflammatory response as well as increased glycolysis and decreased fatty acid β‐oxidation in their muscle. Their lower hepatic triacylglycerol concentrations may reflect decreased flux of free fatty acids to the liver, decreased hepatic fatty acid‐binding protein expression and decreased lipogenesis. Correlation analysis revealed down‐regulation of classical biomarkers of ER stress in their adipose tissue, suggesting that disruption of the IL‐1RI‐mediated inflammatory response may attenuate cellular stress, which was associated with significant protection from diet‐induced insulin resistance, independent of obesity.  相似文献   
993.
The reovirus fusion-associated small transmembrane (FAST) proteins are virus-encoded membrane fusion proteins that function as dedicated cell–cell fusogens. The topology of these small, single-pass membrane proteins orients the majority of the protein on the distal side of the membrane (i.e., inside the cell). We now show that ectopic expression of the endodomains of the p10, p14, and p15 FAST proteins enhances syncytiogenesis induced by the full-length FAST proteins, both homotypically and heterotypically. Results further indicate that the 68-residue cytoplasmic endodomain of the p14 FAST protein (1) is endogenously generated from full-length p14 protein expressed in virus-infected or transfected cells; (2) enhances syncytiogenesis subsequent to stable pore formation; (3) increases the syncytiogenic activity of heterologous fusion proteins, including the differentiation-dependent fusion of murine myoblasts; (4) exerts its enhancing activity from the cytosol, independent of direct interactions with either the fusogen or the membranes being fused; and (5) contains several regions with protein–protein interaction motifs that influence enhancing activity. We propose that the unique evolution of the FAST proteins as virus-encoded cellular fusogens has allowed them to generate a trans-acting, soluble endodomain peptide to harness a cellular pathway or process involved in the poorly understood process that facilitates the transition from microfusion pores to macrofusion and syncytiogenesis.  相似文献   
994.
Hemiparasitic plants gain virtually all mineral nutrients and water from their host plant whilst organic carbon is provided, at least in part, by their own photosynthetic activity, although their rates of assimilation are substantially lower than that found in non-parasitic plants. Hence, hemiparasites must gain at least some of their organic carbon heterotrophically from the host plant. Despite this, heterotrophic carbon gain by root hemiparasites has been investigated only for a few genera. We investigated heterotrophic carbon gain by two root hemiparasites, Rhinanthus minor L. and Euphrasia rostkoviana Hayne (Orobanchaceae), using natural abundance stable isotope (δ13C) profiles of both parasites attached to C3 (wheat) and C4 (maize) hosts coupled to a linear two-source isotope-mixing model to estimate the percentage of carbon in the parasite that was derived from the host. Both R. minor and E. rostkoviana attached to maize hosts were significantly more enriched in 13C than those attached to wheat hosts with R. minor becoming more enriched in 13C than E. rostkoviana. The natural abundance 13C profiles of both parasites were not significantly different from their wheat hosts, but were less enriched in 13C than maize hosts. Using a linear two-source isotope-mixing model, we estimated that R. minor and E. rostkoviana adult plants derive c. 50 and 25% of their carbon from their hosts, respectively. In light of these results, we hypothesise that repeatedly observed negative effect of competition for light on hemiparasites acts predominantly in early ontogenetic stages when parasites grow unattached or the abstraction of host nutrients is less effective.  相似文献   
995.
996.
The biochemical and molecular mechanisms used by alkaliphilic bacteria to acquire iron are unknown. We demonstrate that alkaliphilic (pH > 9) Bacillus species are sensitive to artificial iron (Fe3+) chelators and produce iron-chelating molecules. These alkaliphilic siderophores contain catechol and hydroxamate moieties, and their synthesis is stimulated by manganese(II) salts and suppressed by FeCl3 addition. Purification and mass spectrometric characterization of the siderophore produced by Caldalkalibacillus thermarum failed to identify any matches to previously observed fragmentation spectra of known siderophores, suggesting a novel structure.Iron is an abundant element in nature; however, in most aqueous aerobic environments iron forms insoluble ferric hydroxide, Fe(OH)3. This poses a major problem for most aerobic bacteria, as ferric hydroxide has a solubility constant of 10−39 M, therefore limiting the concentration of ferric ions to 10−18 M at pH 7.0. For example, bacteria living in seawater (approximate pH 8.0) require iron, yet dissolved iron is only present at 0.02 to 2.0 nM (5). Despite this apparent lack of bioavailability, iron has been repeatedly demonstrated to be an essential element for aerobic bacterial growth (1).With the lack of readily accessible iron at physiological pH, most bacteria have evolved systems to deal with the incumbent problem of iron acquisition. Under iron-rich conditions, Fe2+ uptake receptors, such as FeoAB, are synthesized in bacteria, which passively import iron in the immediate vicinity of the cell (1, 23). No equivalent system has been identified for Fe3+ transport. To acquire Fe3+ under aqueous aerobic conditions, bacteria commonly have import systems involving the synthesis, secretion, and regathering of a group of secondary metabolites known as siderophores (1, 11). Siderophores are low-molecular-weight chemical moieties that chelate Fe3+ and typically have complex formation (Kf) constants in the range of 1023 to 1052 (11). Siderophores, like other chelators, are known to increase the solubility of iron by hindering the formation of Fe-oxyhydroxides at high pH, at which the Fe-oxyhydroxides are the dominating inorganic species (27). Siderophores are also known to facilitate the dissolution of Fe from minerals (3). Siderophore-iron complexes can either be transported through cellular membranes using dedicated transport systems or if the Fe(III) central atom is reduced, making the iron bioavailable for cellular processes (10, 14). Three major groups of siderophores have been described in bacteria: hydroxamates, catecholates, and carboxylates. Hydroxamates and catechols are commonly produced by aerobic bacteria living at neutral to alkaline pH, whereas carboxylates are significantly more common in bacteria living in mildly acidic pH (11-13). In the genus Bacillus, Bacillus megaterium and Bacillus subtilis are producers of schizokinen and bacillibactin, respectively (6, 20). Bacillus anthracis produces both a catechol and a hydroxamate siderophore (7, 34), and B. licheniformis strain VK21 is the only known example of a thermoresistant catecholate-producing Gram-positive bacterium (32).Although there is extensive literature on iron capture mechanisms in bacteria that thrive at neutral pH, there is little information at a biochemical or molecular level on how aerobic bacteria growing at extreme alkaline pHs (i.e., pH 9 to 11) acquire iron. At alkaline pH, the solubility constant for iron decreases far below the requirement for living cells, and the concentration of bioavailable iron is estimated to be approximately 10−23 M at pH 10 (11). Taking this extreme lack of iron into account, the sequestering mechanisms of alkaliphilic bacteria must be powerful, yet there has been little analysis of the types of iron-chelating molecules these bacteria produce.  相似文献   
997.
Telomere fusion is an important mutational event that has the potential to lead to large-scale genomic rearrangements of the types frequently observed in cancer. We have developed single-molecule approaches to detect, isolate and characterize the DNA sequence of telomere fusion events in human cells. Using these assays, we have detected complex fusion events that include fusion with interstitial loci adjacent to fragile sites, intra-molecular rearrangements, and fusion events involving the telomeres of both arms of the same chromosome consistent with ring chromosome formation. All fusion events were characterized by the deletion of at least one of the telomeres extending into the sub-telomeric DNA up to 5.6 kb; close to the limit of our assays. The deletion profile indicates that deletion may extend further into the chromosome. Short patches of DNA sequence homology with a G:C bias were observed at the fusion point in 60% of events. The distinct profile that accompanies telomere fusion may be a characteristic of the end-joining processes involved in the fusion event.  相似文献   
998.
We test the hypotheses proposed by Gentry and Schnitzer that liana density and basal area in tropical forests vary negatively with mean annual precipitation (MAP) and positively with seasonality. Previous studies correlating liana abundance with these climatic variables have produced conflicting results, warranting a new analysis of drivers of liana abundance based on a different dataset. We compiled a pan-tropical dataset containing 28,953 lianas (≥2.5 cm diam.) from studies conducted at 13 Neotropical and 11 Paleotropical dry to wet lowland tropical forests. The ranges in MAP and dry season length (DSL) (number of months with mean rainfall <100 mm) represented by these datasets were 860–7250 mm/yr and 0–7 mo, respectively. Pan-tropically, liana density and basal area decreased significantly with increasing annual rainfall and increased with increasing DSL, supporting the hypotheses of Gentry and Schnitzer. Our results suggest that much of the variation in liana density and basal area in the tropics can be accounted for by the relatively simple metrics of MAP and DSL.  相似文献   
999.
Murine desnutrin/human ATGL is a triacylglycerol (TAG) hydrolase with a predicted catalytic dyad within an α-β hydrolase fold in the N-terminal region. In humans, mutations resulting in C-terminal truncation cause neutral lipid storage disease with myopathy. To identify critical functional domains, we measured TAG breakdown in cultured cells by mutated or truncated desnutrin. In vitro, C-terminally truncated desnutrin displayed an even higher apparent Vmax than the full-length form without changes in Km, which may be explained by our finding of an interaction between the C- and N-terminal domains. In live cells, however, C-terminally truncated adenoviral desnutrin had lower TAG hydrolase activity. We investigated a role for the phosphorylation of C-terminal S406 and S430 residues but found that these were not necessary for TAG breakdown or lipid droplet localization in cells. The predicted N-terminal active sites, S47 and D166, were both critical for TAG hydrolysis in live cells and in vitro. We also identified two overlapping N-terminal motifs that predict lipid substrate binding domains, a glycine-rich motif (underlined) and an amphipathic α-helix (bold) within amino acid residues 10–24 (ISFAGCGFLGVYHIG). G14, F17, L18, and V20, but not G16 and G19, were important for TAG hydrolysis, suggesting a potential role for the amphipathic α-helix in TAG binding. This study identifies for the first time critical sites in the N-terminal region of desnutrin and reveals the requirement of the C-terminal region for TAG hydrolysis in cultured cells.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号