Neurons are specialized cells with a complex architecture that includes elaborate dendritic branches and a long, narrow axon that extends from the cell body to the synaptic terminal. The organized transport of essential biological materials throughout the neuron is required to support its growth, function, and viability. In this review, we focus on insights that have emerged from the genetic analysis of long-distance axonal transport between the cell body and the synaptic terminal. We also discuss recent genetic evidence that supports the hypothesis that disruptions in axonal transport may cause or dramatically contribute to neurodegenerative diseases. 相似文献
Efficient production of seedling-derived Type I callus was demonstrated for several corn genotypes including commercial inbred lines. Seeds were germinated on MS-based medium containing 10 mg l(-1) picloram and 3 mg l(-1) 6-benzylaminopurine, which induced the development of axillary buds in the area of coleoptilar node. Nodal sections of 7-10-day old seedlings were isolated, split longitudinally, and placed on callus induction medium supplemented with 2.2 mg l(-1) picloram and 0.5 mg l(-1) 2,4-dichlorophenoxyacetic acid. For lines L4 and L9 the frequency of embryogenic callus induction was 38-42% based on calli per split nodal section. Frequency of callus induction from split nodal sections of seeds germinated on media without growth regulators was 0-3%. Seedling-derived callus of five genotypes was used for Agrobacterium-mediated transformation. Two constructs containing the green fluorescence protein gene and genes for either neomycin phosphotransferase II or glyphosate selection were used in transformation experiments. Transformation frequency varied from 2 to 11% and about 60% of the T(0) plants had 1-2 copies of transgenes. 相似文献
The Pacific herring stock that spawns at Cherry Point, northwest of Bellingham, WA, has undergone a dramatic decline in the last 20 years. The population decline corresponds with a collapse of the age structure. The Cherry Point area contains three deep water shipping piers, two refineries, an aluminum smelter, and urban development. The Cherry Point Aquatic Reserve was formed initially to protect the spawning habitat of the Cherry Point Pacific herring run. We conducted a retrospective assessment using the relative risk model (RRM) to investigate the causes of the current decline of the Cherry Point run. The RRM combines aspects of the weight-of-evidence (WoE) approach and other methods of establishing causality into a framework that deals with multiple stressors, uncertainty, and spatial scale.
An analysis of the Cherry Point Pacific herring age structure and population dynamics indicates that the loss of reproductive potential of the older age class fish was the population characteristic that led to the decline of the run. Exploitation, habitat alteration and climate change are the risk factors that contribute to the decline of the Cherry Point Pacific herring. The retrospective assessment identified the cyclic nature of climate change, as expressed by the warmer sea surface temperatures associated with a warm Pacific Decadal Oscillation (PDO), as the primary factor altering the dynamics of the Pacific herring. Other factors are ranked accordingly along with the associated uncertainty. Criteria for selecting alternative endpoints for managing the Cherry Point Aquatic Reserve are also provided.
The strengths of the retrospective RRM include its ability to combine a WoE and causality criteria with a multitude of stressors at a regional scale. The difficulties include how to deal with differences in the magnitude of effects, and expressing the uncertainty as distributions. 相似文献
RING domains are found in a large number of eukaryotic proteins. Most function as E3 ubiquitin-protein ligases, catalyzing the terminal step in the ubiquitination process. Structurally, these domains have been characterized as binding two zinc ions in a stable cross-brace motif. The tumorigenic human gamma-herpesvirus Kaposi's sarcoma-associated herpesvirus encodes a ubiquitin-protein ligase termed K3, which functions as an immune evasion molecule by ubiquitinating major histocompatibility complex class I. K3 possesses at its N terminus a domain related to cellular RING domains but with an altered zinc ligand arrangement. This domain was initially characterized as a plant homeodomain, a structure not previously known to function as an E3. Here, it is conclusively demonstrated that the K3 N-terminal domain is a variant member of the RING domain family and not a plant homeodomain. The domain is found to interact with the cellular ubiquitin-conjugating enzymes UbcH5A to -C and UbcH13, which dock to the equivalent surface as on classical cellular RING domains. Interaction with UbcH13 suggests a possible role for K3 in catalyzing Lys(63)-linked ubiquitination. 相似文献
The role of heparan sulfate (HS) in regulating blood coagulation has a wide range of clinical implications. In this study, we investigated the role of 3-O-sulfotransferase isoform 5 (3-OST-5) in generating anticoagulant HS in vivo. A Chinese hamster ovary cell line (3OST5/CHO) stably expressing 3-OST-5 was generated. The expression of 3-OST-5 in 3OST5/CHO cells was confirmed by Northern blot analysis, RT-PCR, and the disaccharide analyses of the HS from the cells. We also determined the effects of the HS from 3OST5/CHO on antithrombin-mediated inhibition of factor Xa. Fluorescently labeled antithrombin bound to the surface of 3OST5/CHO cells, suggesting that the antithrombin-binding HS is indeed present on the cell surface. Our results demonstrate that the 3-OST-5 gene is capable of synthesizing anticoagulant HS in CHO cells and has the potential to contribute to the biosynthesis of anticoagulant HS in humans. 相似文献
Substituted 4-amino cyclohexylglycine analogues were evaluated for DP-IV inhibitory properties. Bis-sulfonamide 15e was an extremely potent 2.6 nM inhibitor of the enzyme with excellent selectivity over all counterscreens. 2,4-difluorobenzenesulfonamide 15b and 1-naphthyl amide 16b, however, combined an acceptable in vitro profile with good pharmacokinetic properties in the rat, and 15b was orally efficacious at 3 mpk in an OGTT in lean mice. 相似文献
Many recombinant proteins are synthesized as fusion proteins containing affinity tags to aid in the downstream processing. After purification, the affinity tag is often removed by using a site-specific protease such as factor Xa (FXa). However, the use of FXa is limited by its expense and availability from plasma. To develop a recombinant source of FXa, we have expressed two novel forms of FXa using baby hamster kidney (BHK) cells as host and the expression vector pNUT. The chimeric protein FIIFX consisted of the prepropeptide and the Gla domain of prothrombin linked to the activation peptide and protease region of FXa, together with a cellulose-binding domain (CBD(Cex)) as an affinity tag. A second variant consisted of the transferrin signal peptide linked to the second epidermal growth factor-like domain and the catalytic domain of FX and a polyhistidine tag. Both FX variants were secreted into the medium, their affinity tags were functional, and following activation, both retained FXa-specific proteolytic activity. However, the yield of the FIIFX-CBD(Cex) fusion protein was 10-fold higher than that of FX-CBD(Cex) and other forms of recombinant FX reported to date. The FXa derivatives were used to cleave two different fusion proteins, including a biologically inactive alpha-factor-hirudin fusion protein secreted by Saccharomyces cerevisiae. After cleavage, the released hirudin demonstrated biological activity in a thrombin inhibition assay, suggesting that this method may be applicable to the production of toxic or unstable proteins. The availability of novel FX derivatives linked to different affinity tags allows the development of a versatile system for processing fusion proteins in vitro. 相似文献