首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   121篇
  免费   19篇
  2023年   1篇
  2022年   3篇
  2018年   2篇
  2017年   1篇
  2016年   3篇
  2015年   4篇
  2014年   5篇
  2013年   13篇
  2012年   5篇
  2011年   7篇
  2010年   10篇
  2009年   6篇
  2008年   3篇
  2007年   12篇
  2006年   8篇
  2005年   7篇
  2004年   5篇
  2003年   7篇
  2002年   5篇
  2001年   4篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1992年   2篇
  1991年   5篇
  1990年   1篇
  1988年   1篇
  1987年   3篇
  1986年   2篇
  1984年   1篇
  1979年   1篇
  1977年   1篇
  1970年   1篇
排序方式: 共有140条查询结果,搜索用时 15 毫秒
21.
22.
The abundant Fis nucleoid protein selectively binds poorly related DNA sequences with high affinities to regulate diverse DNA reactions. Fis binds DNA primarily through DNA backbone contacts and selects target sites by reading conformational properties of DNA sequences, most prominently intrinsic minor groove widths. High-affinity binding requires Fis-stabilized DNA conformational changes that vary depending on DNA sequence. In order to better understand the molecular basis for high affinity site recognition, we analyzed the effects of DNA sequence within and flanking the core Fis binding site on binding affinity and DNA structure. X-ray crystal structures of Fis-DNA complexes containing variable sequences in the noncontacted center of the binding site or variations within the major groove interfaces show that the DNA can adapt to the Fis dimer surface asymmetrically. We show that the presence and position of pyrimidine-purine base steps within the major groove interfaces affect both local DNA bending and minor groove compression to modulate affinities and lifetimes of Fis-DNA complexes. Sequences flanking the core binding site also modulate complex affinities, lifetimes, and the degree of local and global Fis-induced DNA bending. In particular, a G immediately upstream of the 15 bp core sequence inhibits binding and bending, and A-tracts within the flanking base pairs increase both complex lifetimes and global DNA curvatures. Taken together, our observations support a revised DNA motif specifying high-affinity Fis binding and highlight the range of conformations that Fis-bound DNA can adopt. The affinities and DNA conformations of individual Fis-DNA complexes are likely to be tailored to their context-specific biological functions.  相似文献   
23.
24.
25.
The typification of the Linnaean names Anthemis italica and A. tinctoria var. triumfettii is discussed. Specimens from LINN (no. 1016.4) and SBT (no. 72) are designated as lectotypes. The name A. italica is proposed as a synonym of A. maritima, while A. tinctoria var. triumfettii is currently accepted under the genus Cota, as C. triumfettii.  相似文献   
26.
2C-methyl-D-erythritol 2,4-cyclodiphosphate was recently shown to be formed from 2C-methyl-D-erythritol 4-phosphate by the consecutive action of IspD, IspE, and IspF proteins in the nonmevalonate pathway of terpenoid biosynthesis. To complement previous work with radiolabelled precursors, we have now demonstrated that [U-13C5]2C-methyl-D-erythritol 4-phosphate affords [U-13C5]2C-methyl-D-erythritol 2,4-cyclodiphosphate in isolated chromoplasts of Capsicum annuum and Narcissus pseudonarcissus. Moreover, chromoplasts are shown to efficiently convert 2C-methyl-D-erythritol 4-phosphate as well as 2C-methyl-D-erythritol 2,4-cyclodiphosphate into the carotene precursor phytoene. The bulk of the kinetic data collected in competition experiments with radiolabeled substrates is consistent with the notion that the cyclodiphosphate is an obligatory intermediate in the nonmevalonate pathway to terpenes. Studies with [2,2'-13C2]2C-methyl-D-erythritol 2,4-cyclodiphosphate afforded phytoene characterized by pairs of jointly transferred 13C atoms in the positions 17/1, 18/5, 19/9, and 20/13 and, at a lower abundance, in positions 16/1, 4/5, 8/9, and 12/13. A detailed scheme is presented for correlating the observed partial scrambling of label with the known lack of fidelity of the isopentenyl diphosphate/dimethylethyl diphosphate isomerase.  相似文献   
27.
The proteolytic system of Bifidobacterium animalis subsp. lactis was analyzed, and an intracellular endopeptidase (PepO) was identified and characterized. This work reports the first complete cloning, purification, and characterization of a proteolytic enzyme in Bifidobacterium spp. Aminopeptidase activities (general aminopeptidases, proline iminopeptidase, X-prolyl dipeptidylaminopeptidase) found in cell extracts of B. animalis subsp. lactis were higher for cells that had been grown in a milk-based medium than for those grown in MRS. A high specific proline iminopeptidase activity was observed in B. animalis subsp. lactis. Whole cells and cell wall-bound protein fractions showed no caseinolytic activity; however, the combined action of intracellular proteolytic enzymes could hydrolyze casein fractions rapidly. The endopeptidase activity of B. animalis subsp. lactis was examined in more detail, and the gene encoding an endopeptidase O in B. animalis subsp. lactis was cloned and overexpressed in Escherichia coli. The deduced amino acid sequence for B. animalis subsp. lactis PepO indicated that it is a member of the M13 peptidase family of zinc metallopeptidases and displays 67.4% sequence homology with the predicted PepO protein from Bifidobacterium longum. The recombinant enzyme was shown to be a 74-kDa monomer. Activity of B. animalis subsp. lactis PepO was found with oligopeptide substrates of at least 5 amino acid residues, such as met-enkephalin, and with larger substrates, such as the 23-amino-acid peptide αs1-casein(f1-23). The predominant peptide bond cleaved by B. animalis subsp. lactis PepO was on the N-terminal side of phenylalanine residues. The enzyme also showed a post-proline secondary cleavage site.  相似文献   
28.
The N‐end rule pathway uses an evolutionarily conserved mechanism in bacteria and eukaryotes that marks proteins for degradation by ATP‐dependent chaperones and proteases such as the Clp chaperones and proteases. Specific N‐terminal amino acids (N‐degrons) are sufficient to target substrates for degradation. In bacteria, the ClpS adaptor binds and delivers N‐end rule substrates for their degradation upon association with the ClpA/P chaperone/protease. Here, we report the first crystal structure, solved at 2.7 Å resolution, of a eukaryotic homolog of bacterial ClpS from the malaria apicomplexan parasite Plasmodium falciparum (Pfal). Despite limited sequence identity, Plasmodium ClpS is very similar to bacterial ClpS. Akin to its bacterial orthologs, plasmodial ClpS harbors a preformed hydrophobic pocket whose geometry and chemical properties are compatible with the binding of N‐degrons. However, while the N‐degron binding pocket in bacterial ClpS structures is open and accessible, the corresponding pocket in Plasmodium ClpS is occluded by a conserved surface loop that acts as a latch. Despite the closed conformation observed in the crystal, we show that, in solution, Pfal‐ClpS binds and discriminates peptides mimicking bona fide N‐end rule substrates. The presence of an apicoplast targeting peptide suggests that Pfal‐ClpS localizes to this plastid‐like organelle characteristic of all Apicomplexa and hosting most of its Clp machinery. By analogy with the related ClpS1 from plant chloroplasts and cyanobacteria, Plasmodium ClpS likely functions in association with ClpC in the apicoplast. Our findings open new venues for the design of novel anti‐malarial drugs aimed at disrupting parasite‐specific protein quality control pathways.  相似文献   
29.
30.
Two of the defining hallmarks of Alzheimer’s disease (AD) are deposits of the β-amyloid peptide, Aβ, and the generation of reactive oxygen species, both of which may be due to the Aβ peptide coordinating metal ions. The Cu2+ concentrations in cores of senile plaques are significantly elevated in AD patients. Experimental results indicate that Aβ1–42 in particular has a very high affinity for Cu2+, and that His13 and His14 are the two most firmly established ligands in the coordination sphere of the copper ion. Quantum chemical calculations using the unrestricted B3LYP hybrid density functional method with the 6–31G(d) basis set were performed for geometries, zero point energies and thermochemistry. The effects of solvation were accommodated using the CPCM method. The enthalpies were calculated with the 6–311+G(2df,2p) basis set. Calculations show that when Cu(H2O)42+ combines with the model compound 1 (3-(1H-imidazol-5-yl)-N-[2-(1H-imidazol-5-yl)ethyl] propanamide) in the aqueous phase, the most stable binding site involves the Nπ atoms of His13 and His14 as well as the carbonyl of the intervening backbone amide group. These structures are fairly rigid and the implications for conformational changes to the Aβ backbone are discussed. In solution at pH=7, Cu2+ promotes the deprotonation and involvement in the binding of the backbone amide nitrogen in a β-sheet like structure. This geometry does not induce strain in the peptide backbone, making it the most likely representation of that portion of the Cu2+–Aβ complex monomer in aqueous solution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号