首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   236篇
  免费   12篇
  248篇
  2023年   2篇
  2021年   2篇
  2019年   7篇
  2018年   4篇
  2017年   3篇
  2016年   5篇
  2015年   14篇
  2014年   10篇
  2013年   7篇
  2012年   13篇
  2011年   12篇
  2010年   10篇
  2009年   8篇
  2008年   9篇
  2007年   10篇
  2006年   9篇
  2005年   8篇
  2004年   18篇
  2003年   12篇
  2002年   7篇
  2001年   16篇
  2000年   3篇
  1999年   5篇
  1998年   4篇
  1997年   1篇
  1995年   2篇
  1994年   3篇
  1993年   4篇
  1992年   3篇
  1991年   2篇
  1990年   3篇
  1989年   2篇
  1987年   3篇
  1986年   3篇
  1985年   1篇
  1984年   4篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1971年   3篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1966年   2篇
排序方式: 共有248条查询结果,搜索用时 15 毫秒
81.
Locomotor performance affects foraging efficiency, predator avoidance and consequently fitness. Agility and speed determine the animal's social status and reflect its condition. In this study, we test how predatory pressure and parasite load influences locomotor performance of wild specimens of the sand lizard Lacerta agilis. Animals were chased on a 2-metre racetrack. Lizards with autotomy ran significantly faster than lizards with an intact tail, but there was no significant difference in running speed between individuals with fresh caudal autotomy and regenerated tails. Parasite presence and load, age and sex had no significant effect on speed. Our results indicate that autotomy either alters locomotory behaviour or that individuals with autotomised tails were those that previously survived contact with predators, and therefore represented a subgroup of the fastest individuals. Therefore, in general, predatory pressure but not parasites affected locomotor performance in lizards.  相似文献   
82.
The historical development of concepts of gap junctions as sites for electrical, ionic, and metabolic coupling is reviewed, from the initial discovery of gap junctions linking heart cells, to the current concepts that gap junctions represent 'electrotonic synapses' between neurons. The ultrastructure and immunocytochemistry of gap junctions in heart, brain, and spinal cord of adult rats is examined using conventional thin sections, negative staining, grid-mapped freeze-fracture replicas, and immunogold-labeled freeze-fracture replicas. We review evidence for neuronal gap junctions at 'mixed' (combined electrical and chemical) synapses throughout adult rat spinal cord. We also show immunogold labeling of connexin43 in astrocyte and ependymocyte gap junctions and of connexin32 in oligodendrocyte gap junctions. Ultrastructural and freeze-fracture immunocytochemical methods have provided for definitive determination of the number, size, histological distribution, and connexin composition of gap junctions between neurons in all regions of the central nervous systems of vertebrate species.  相似文献   
83.
The electric and structural properties of envelope membranes of chloroplasts obtained from vegetative and generative plants of rape and the effect of hormone (IAA, GA(3) and zearalenone) treatment were determined by zeta potential and small-angle X-ray scattering (SAXS) methods. Chloroplasts were isolated from leaves cut off from the vegetative (before cooling) and generative apical parts of plants. The lipid composition of chloroplast envelope membranes were analyzed by chromatographic techniques. Envelopes from generative plants contained higher levels of digalactosyldiacylglycerol (DGDG) and smaller amounts of phospholipids (PLs) in comparison to those obtained from vegetative ones. Moreover, envelopes of generative plants were characterized by higher fractions of unsaturated fatty acids. The zeta potential changes caused by hormone treatment were higher for chloroplasts isolated from vegetative plants in comparison to chloroplasts isolated from generative ones. An especially strong effect was observed for chloroplasts treated with IAA. The thickness of bilayers of untreated chloroplasts from vegetative plants were larger by 0.4 nm when comparing to the thickness of layers obtained from generative ones. The effect of hormones (GA(3) and zearalenone) was detected only for vegetative chloroplasts. Both applied methods indicated differences in the properties of untreated and hormone-treated chloroplasts obtained from vegetative and generative plants.  相似文献   
84.
85.
86.
Michael J. Dudek 《Proteins》2014,82(10):2497-2511
A molecular mechanics model, previously validated in applications to structure prediction, is shown to reproduce experiment in predictions of protein ionization state, and in predictions of sequence and pH dependence of protein stability. Over a large dataset, 1876 values of ΔΔG of folding, the RMSD is 1.34 kcal/mol. Using an alternative measure of accuracy, either the sign of the calculated ΔΔG agrees with experiment or the absolute value of the deviation is less than 1.0 kcal/mol, 1660 of 1876 data points (88.5%) pass the condition. Relative to models used previously in computer‐aided protein design, the concept, we propose, most responsible for the performance of our model, and for the extensibility to non‐neutral values of pH, is the treatment of electrostatic energy. The electronic structure of the protein is modeled using distributed atomic multipoles. The structured liquid state of the solvent is modeled using a dielectric continuum. A modification to the energetics of the reaction field, induced by the protein in the dielectric continuum, attempts to account for preformed multipoles of solvent water molecules and ions. An adjustable weight (with optimal value.141) applied to the total vacuum energy accounts implicitly for electronic polarization. A threshold distance, beyond which pairwise atomic interactions are neglected, is not used. In searches through subspaces of sequences and conformations, efficiency remains acceptable for useful applications. Proteins 2014; 82:2497–2511. © 2014 Wiley Periodicals, Inc.  相似文献   
87.
The endoplasmic reticulum has an intricate network of pathways built to deal with the secretory and integral membrane protein synthesis demands of the cell, as well as adaptive responses set up for the endoplasmic reticulum to rely on when stressed. These pathways are both essential and complex, and because of these 2 factors, several situations can lead to a dysfunctional endoplasmic reticulum and result in a dysfunctional cell with the potential to contribute to the progression of disease. The endoplasmic reticulum has been implicated in several metabolic, neurodegenerative, inflammatory, autoimmune, and renal diseases and disorders, and in particular, cardiovascular diseases. The role of the endoplasmic reticulum in cardiovascular disease shows how the change in function of a particular microscopic organelle can lead to macroscopic changes in the form of disease.  相似文献   
88.
Missense mutations in human TPM3 gene encoding γ-tropomyosin expressed in slow muscle type 1 fibers, were associated with three types of congenital myopathies-nemaline myopathy, cap disease and congenital fiber type disproportion. Functional effects of the following substitutions: Leu100Met, Ala156Thr, Arg168His, Arg168Cys, Arg168Gly, Lys169Glu, and Arg245Gly, were examined in biochemical assays using recombinant tropomyosin mutants and native proteins isolated from skeletal muscle. Most, but not all, mutations decreased the affinity of tropomyosin for actin alone and in complex with troponin (±Ca(2+)). All studied tropomyosin mutants reduced Ca-induced activation but had no effect on the inhibition of actomyosin cross-bridges. Ca(2+)-sensitivity of the actomyosin interactions, as well as cooperativity of myosin-induced activation of the thin filament was affected by individual tropomyosin mutants with various degrees. Decreased motility of the reconstructed thin filaments was a result of combined functional defects caused by myopathy-related tropomyosin mutants. We conclude that muscle weakness and structural abnormalities observed in TPM3-related congenital myopathies result from reduced capability of the thin filament to fully activate actin-myosin cross-bridges.  相似文献   
89.
Abstract.  Objectives : Angiogenesis, the process of formation of blood vessels, is essential for many physiological as well as pathological processes. It has been shown that human adipose tissue contains a population of non-characterized cells, called stromal-vascular fraction (SVF) cells, which are able to differentiate into several lineages. The aim of this study was to determine conditions for promoting differentiation of human adipose tissue progenitors towards endothelial cells, as well as to show that SVF cells cooperate with differentiated endothelium in capillary network formation. Materials and methods : Stromal vascular fraction cells were isolated according to modified Hauner's method and after adaptation they were cultured in pro-angiogenic or pro-adipogenic medium. Cells were characterized by presence of surface antigens by flow cytometry, and by expression of genes characteristic for endothelial cells or for adipocytes, quantitative real-time polymerase chain reaction. A number of tests were performed to verify their differentiation. Results : Differentiation of human SVF cells towards endothelium was stimulated by the presence of serum and absence of adipogenic factors, documented by the pattern of gene expression as well as different functional in vitro assays. SVF cells were found to work together with human umbilical vein endothelial cells to form capillary networks. Conclusions : Here, we show that differentiation of SVF cells to endothelial cells or adipocyte-like cells depended on the medium used. Our work provides a clear model for analysing the differentiation capacity of SVF cells.  相似文献   
90.
Cytoskeletal regulation of pulmonary vascular permeability.   总被引:17,自引:0,他引:17  
The endothelial cell (EC) lining of the pulmonary vasculature forms a semipermeable barrier between the blood and the interstitium of the lung. Disruption of this barrier occurs during inflammatory disease states such as acute lung injury and acute respiratory distress syndrome and results in the movement of fluid and macromolecules into the interstitium and pulmonary air spaces. These processes significantly contribute to the high morbidity and mortality of patients afflicted with acute lung injury. The critical importance of pulmonary vascular barrier function is shown by the balance between competing EC contractile forces, which generate centripetal tension, and adhesive cell-cell and cell-matrix tethering forces, which regulate cell shape. Both competing forces in this model are intimately linked through the endothelial cytoskeleton, a complex network of actin microfilaments, microtubules, and intermediate filaments, which combine to regulate shape change and transduce signals within and between EC. A key EC contractile event in several models of agonist-induced barrier dysfunction is the phosphorylation of regulatory myosin light chains catalyzed by Ca(2+)/calmodulin-dependent myosin light chain kinase and/or through the activity of the Rho/Rho kinase pathway. Intercellular contacts along the endothelial monolayer consist primarily of two types of complexes (adherens junctions and tight junctions), which link to the actin cytoskeleton to provide both mechanical stability and transduction of extracellular signals into the cell. Focal adhesions provide additional adhesive forces in barrier regulation by forming a critical bridge for bidirectional signal transduction between the actin cytoskeleton and the cell-matrix interface. Increasingly, the effects of mechanical forces such as shear stress and ventilator-induced stretch on EC barrier function are being recognized. The critical role of the endothelial cytoskeleton in integrating these multiple aspects of pulmonary vascular permeability provides a fertile area for the development of clinically important barrier-modulating therapies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号