首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   229篇
  免费   12篇
  2023年   2篇
  2021年   2篇
  2019年   6篇
  2018年   4篇
  2017年   3篇
  2016年   5篇
  2015年   11篇
  2014年   10篇
  2013年   7篇
  2012年   13篇
  2011年   12篇
  2010年   9篇
  2009年   9篇
  2008年   9篇
  2007年   10篇
  2006年   8篇
  2005年   9篇
  2004年   17篇
  2003年   13篇
  2002年   7篇
  2001年   13篇
  2000年   2篇
  1999年   5篇
  1998年   5篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   4篇
  1992年   3篇
  1991年   2篇
  1990年   3篇
  1989年   2篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
  1984年   4篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1971年   3篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1966年   2篇
排序方式: 共有241条查询结果,搜索用时 15 毫秒
91.
Actin- and microtubule-mediated changes in cell shape are essential for many cellular activities. However, the molecular mechanisms underlying the interplay between the two are complex and remain obscure. Here we show that the expression of δ-catenin (or NPRAP/Neurojungin), a member of p120ctn subfamily of armadillo proteins can induce the branching of dendrite-like processes in 3T3 cells and enhance dendritic morphogenesis in primary hippocampal neurons. This induction of branching phenotype involves initially the disruption of filamentous actin, and requires the growth of microtubules. The carboxyl-terminal truncation mutant of δ-catenin can cluster and redistribute the full-length protein, and dominantly inhibit its branching effect. δ-Catenin forms protein complexes and can bind directly to actin in vitro. The carboxyl-terminal truncation of δ-catenin does not interfere with its actin-binding capability; therefore the actin interaction alone is not sufficient for the induction of dendrite-like processes. When δ-catenin-transformed cells establish elaborate dendrite-like branches, the main cellular processes become stabilized and resist the disruption of both actin filaments and microtubules, as determined by fluorescent light microscopy and time-lapse recording analyses. We suggest that δ-catenin can effect a biphasic cytoskeletal remodeling event which differentially regulates actin and microtubules and promotes cellular morphogenesis.  相似文献   
92.
J Bergelson  E Stahl  S Dudek  M Kreitman 《Genetics》1998,148(3):1311-1323
We investigated levels of nucleotide polymorphism within and among populations of the highly self-fertilizing Brassicaceous species, Arabidopsis thaliana. Four-cutter RFLP data were collected at one mitochondrial and three nuclear loci from 115 isolines representing 11 worldwide population collections, as well as from seven commonly used ecotypes. The collections include multiple populations from North America and Eurasia, as well as two pairs of collections from locally proximate sites, and thus allow a hierarchical geographic analysis of polymorphism. We found no variation at the mitochondrial locus Nad5 and very low levels of intrapopulation nucleotide diversity at Adh, Dhs1, and Gpa1. Interpopulation nucleotide diversity was also consistently low among the loci, averaging 0.0014. gst, a measure of population differentiation, was estimated to be 0.643. Interestingly, we found no association between geographical distance between populations and genetic distance. Most haplotypes have a worldwide distribution, suggesting a recent expansion of the species or long-distance gene flow. The low level of polymorphism found in this study is consistent with theoretical models of neutral mutations and background selection in highly self-fertilizing species.  相似文献   
93.
R Dudek  S Kibira  J K?hler  R J Bing 《Life sciences》1992,50(12):863-873
The effect of recombinant tumor necrosis factor and other cytokines stimulated by LPS (lipopolysaccharide), on the release of endothelial-derived relaxing factor and of prostacyclin was investigated using freshly harvested endothelial cells attached to plastic microcarrier beads. The results show that the cytokines failed to interfere with the release of EDRF and prostacyclin under the conditions of these experiments.  相似文献   
94.
Directional mutation pressure associated with replication processes is the main cause of the asymmetry between the leading and lagging DNA strands in bacterial genomes. On the other hand, the asymmetry between sense and antisense strands of protein coding sequences is a result of both mutation and selection pressures. Thus, there are two different ways of superposition of the sense strand, on the leading or lagging strand. Besides many other implications of these two possible situations, one seems to be very important - because of the asymmetric replication-associated mutation pressure, the mutation rate of genes depends on their location. Using Monte Carlo methods, we have simulated, under experimentally determined directional mutation pressure, the divergence rate and the elimination rate of genes depending on their location in respect to the leading/lagging DNA strands in the asymmetric prokaryotic genome. We have found that the best survival strategy for the majority of genes is to sometimes switch between DNA strands. Paradoxically, this strategy results in higher substitution rates but remains in agreement with observations in bacterial genomes that such inversions are very frequent and divergence rate between homologs lying on different DNA strands is very high.  相似文献   
95.
New mRNA must be transcribed in order to consolidate changes in synaptic strength. But how are events at the synapse communicated to the nucleus? Some research has shown that proteins can move from activated synapses to the nucleus. However, other work has shown that action potentials can directly inform the nucleus about cellular activation. Here we contend that action potential-induced signalling to the nucleus best meets the requirements of the consolidation of synapse-specific plasticity, which include both timing and stoichiometric constraints.  相似文献   
96.
97.
Abstract: The involvement of cell cycle-regulatory proteins in apoptosis of neuronally differentiated PC12 cells induced by the removal of nerve growth factor and serum was examined. Three major findings are presented. (1) Cdc2 kinase protein levels increased fivefold in apoptotic PC12 cells by day 3 of serum and nerve growth factor deprivation. Histone H1 kinase activity was increased significantly in p13suc1 precipitates of apoptotic PC12 cells, which was due to increased activation and/or expression of cdc2 kinase. (2) The protein levels of cyclin-dependent kinase 4, cyclin D, and proliferating cell nuclear antigen that are normally expressed in the cell cycle were increased during neuronal PC12 cell apoptosis. (3) The levels of the catalytic subunit, but not the regulatory subunit of the calcium/calmodulin-dependent protein phosphatase 2B, decreased significantly concomitant with a significant decrease in protein phosphatase 2B activity early in the apoptotic process. Protein phosphatase 2A activity decreased slightly but significantly after 3 days of serum and nerve growth factor deprivation, and no alterations in protein phosphatase 1 were observed during the apoptotic process. These data demonstrate that certain cell cycle-regulatory proteins are inappropriately expressed and that alterations in specific phosphorylation events, as indicated by the increase in histone H1 kinase activity and the decrease in protein phosphatase 2B activity, are most likely occurring during apoptosis of PC12 cells. These observations support the hypothesis that apoptosis may be due in part to a nondividing cell's uncoordinated attempt to reenter and progress through the cell cycle.  相似文献   
98.
Communication from astrocytes to neurons has recently been reported by two laboratories, but different mechanisms were thought to underlie glial calcium wave activation of associated neurons. Neuronal calcium elevation by glia observed in the present report is similar to that reported previously, where an increase in neuronal calcium was demonstrated in response to glial stimulation. In the present study hippocampal neurons plated on a confluent glial monolayer displayed a transient increase in intracellular calcium following a short delay after the passage of a wave of increased calcium in underlying glia. Activated cells displayed action potentials in response to glial waves and showed antineurofilament immunoreactivity. Finally, the N-methyl-D -aspartate glutamate receptor antagonist DL -2-amino-5-phosphonovaleric acid and the non-NMDA glutamate receptor antagonist 6,7-dinitroquinoxaline-2,3-dione significantly reduced the responsiveness of neurons to glial calcium waves. Our results indicate that hippocampal neurons growing on hippocampal or cortical astrocytes respond to glial calcium waves with elevations in calcium and increased electrical activity. Furthermore, we show that in most cases this communication appears to be mediated by ionotropic glutamate receptor channels. © 1995 John Wiley & Sons, Inc.  相似文献   
99.
Normal Xenopus laevis embryos begin movements at 1 day after fertilization. Embryos homozygous for the unresponsive mutation fail to move until 4 days after fertilization (just prior to feeding), after which they recover slowly. Electrophysiological studies were undertaken to determine the focus of this mutation. Formamide treatment of normal embryos was used to produce a phenocopy of the unresponsive condition, permitting direct comparisons between mutant and normal embryos. Intracellular recordings from muscle cells were obtained in formamide-treated and untreated preparations with both normal and unresponsive animals. Local electrical stimulation evoked either isolated endplate potentials and action potentials or after-discharges of these events in all preparations. A decrease in illumination also caused a burst of endplate potentials and action potentials. Therefore, the electrophysiology of the neuromuscular junction in unresponsive appears qualitatively normal; the effect of the mutation on the motor system is probably distal to the neuromuscular junction, either at or subsequent to excitation-contraction coupling.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号