首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   170篇
  免费   18篇
  188篇
  2018年   3篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2014年   7篇
  2013年   7篇
  2012年   4篇
  2011年   9篇
  2010年   3篇
  2009年   10篇
  2008年   11篇
  2007年   7篇
  2006年   7篇
  2005年   6篇
  2004年   11篇
  2003年   8篇
  2002年   5篇
  2001年   6篇
  2000年   4篇
  1998年   2篇
  1997年   4篇
  1996年   1篇
  1995年   5篇
  1994年   4篇
  1993年   9篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1975年   2篇
  1973年   4篇
  1972年   3篇
  1971年   4篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1967年   2篇
  1966年   1篇
  1959年   1篇
排序方式: 共有188条查询结果,搜索用时 15 毫秒
51.
BACKGROUND AND AIMS: Moss food-conducting cells (leptoids and specialized parenchyma cells) have a highly distinctive cytology characterized by a polarized cytoplasmic organization and longitudinal alignment of plastids, mitochondria, endoplasmic reticulum and vesicles along endoplasmic microtubules. Previous studies on the desiccation biology of mosses have focused almost exclusively on photosynthetic tissues; the effects of desiccation on food-conducting cells are unknown. Reported here is a cytological study of the effects of de- and rehydration on food-conducting cells in the desiccation-tolerant moss Polytrichum formosum aimed at exploring whether the remarkable subcellular organization of these cells is related to the ability of mosses to survive desiccation. METHODS: Shoots of Polytrichum formosum were dehydrated under natural conditions and prepared for transmission and scanning electron microscopy using both standard and anhydrous chemical fixation protocols. Replicate samples were then fixed at intervals over a 24-h period following rehydration in either water or in a 10 microM solution of the microtubule-disrupting drug oryzalin. KEY RESULTS: Desiccation causes dramatic changes; the endoplasmic microtubules disappear; the nucleus, mitochondria and plastids become rounded and the longitudinal alignment of the organelles is lost, though cytoplasmic polarity is in part retained. Prominent stacks of endoplasmic reticulum, typical of the hydrated condition, are replaced with membranous tubules arranged at right angles to the main cellular axis. The internal cytoplasm becomes filled with small vacuoles and the plasmalemma forms labyrinthine tubular extensions outlining newly deposited ingrowths of cell wall material. Whereas plasmodesmata in meristematic cells at the shoot apex and in stem parenchyma cells appear to be unaffected by dehydration, those in leptoids become plugged with electron-opaque material. Starch deposits in parenchyma cells adjoining leptoids are depleted in desiccated plants. Rehydration sees complete reestablishment over a 12- to 24-h period of the cytology seen in the control plants. Oryzalin effectively prevents leptoid recovery. CONCLUSIONS: The results point to a key role of the microtubular cytoskeleton in the rapid re-establishment of the elaborate cytoplasmic architecture of leptoids during rehydration. The reassembly of the endoplasmic microtubule system appears to dictate the time frame for the recovery process. The failure of leptoids to recover normal cytology in the presence of oryzalin further underlines the key role of the microtubules in the control of leptoid cytological organization.  相似文献   
52.
Reactivation of repaired DNA replication forks is essential for complete duplication of bacterial genomes. However, not all bacteria encode homologs of the well-studied Escherichia coli DNA replication restart primosome proteins, suggesting that there might be distinct mechanistic differences among DNA replication restart pathways in diverse bacteria. Since reactivation of repaired DNA replication forks requires coordinated DNA and protein binding by DNA replication restart primosome proteins, we determined the crystal structure of Neisseria gonorrhoeae PriB at 2.7 Å resolution and investigated its ability to physically interact with DNA and PriA helicase. Comparison of the crystal structures of PriB from N. gonorrhoeae and E. coli reveals a well-conserved homodimeric structure consisting of two oligosaccharide/oligonucleotide-binding (OB) folds. In spite of their overall structural similarity, there is significant species variation in the type and distribution of surface amino acid residues. This correlates with striking differences in the affinity with which each PriB homolog binds single-stranded DNA and PriA helicase. These results provide evidence that mechanisms of DNA replication restart are not identical across diverse species and that these pathways have likely become specialized to meet the needs of individual organisms.  相似文献   
53.
Numerous members of the IAP family can suppress apoptotic cell death in physiological settings. Whereas certain IAPs directly inhibit caspases, the chief proteolytic effectors of apoptosis, the protective effects of other IAPs do not correlate well with their caspase inhibitory activities, suggesting the involvement of alternative cytoprotective abilities. To examine this issue, we have characterized the protective effects of an ancestral, baculoviral IAP (Op-IAP) in mammalian cells. We show that although Op-IAP potently inhibited Bax-mediated apoptosis in human cells, Op-IAP failed to directly inhibit mammalian caspases. However, Op-IAP efficiently bound the IAP antagonist Smac/Diablo, thereby preventing Smac/Diablo-mediated inhibition of cellular IAPs. Whereas reduction of Smac/Diablo protein levels in the absence of Op-IAP prevented Bax-mediated apoptosis, overexpression of Smac/Diablo neutralized Op-IAP-mediated protection, and an Op-IAP variant unable to bind Smac/Diablo failed to prevent apoptosis. Finally, Op-IAP catalyzed the ubiquitination of Smac/Diablo, an activity that contributed to Op-IAP-mediated inhibition of apoptosis. These data show that cytoprotective IAPs can inhibit apoptosis through the neutralization of IAP antagonists, rather than by directly inhibiting caspases.  相似文献   
54.
55.
56.
Historically, chemical ecologists assumed that cucurbitacin feeding and sequestration in rootworm leaf beetles is a remnant of an ancient association between the Luperini (Coleoptera: Chrysomelidae; Galerucinae) and Cucurbitaceae (ancestral host hypothesis). Under this premise, rootworms that do not develop on cucurbits but undergo pharmacophagous forays for cucurbitacins are thought to do so to supplement novel host diets that lack these bitter compounds. The ancestral host hypothesis is supported from studies of pyrrolizidine alkaloid pharmacophagy in Lepidoptera but has not been subjected to phylogenetic analysis within the Luperini. New evidence that this feeding behavior is better correlated with an adult affinity for pollen than with larval host offers the possibility that Old and New World rootworm species with an affinity for cucurbitacins converged on this behavior through apomorphic taste receptor modifications (loose receptor hypothesis). Here we test the monophyly of cucurbitacin feeding within the Luperini by using nuclear and mitochondrial sequence data to infer phylogenetic relationships among 49 taxa representing tribes of the Galerucinae and subtribes of the Luperini. The resulting phylogenetic hypothesis is mostly concordant with existing tribal and subtribal delineations within the Subfamily Galerucinae sensu stricto (Galerucinae not including the flea beetles). The establishment of ancestry among the subtribes of the Luperini refutes the monophyly of cucurbitacin feeding and cucurbit specialization, with the New World Diabroticina being paraphyletic to the Old World Aulacophorina and cosmopolitan Luperina. These data unambiguously support the convergent evolution of cucurbitacin feeding in rootworms and are inconsistent with the ancestral host hypothesis.  相似文献   
57.
Four-way helical junctions are found widely in natural RNA species. In this study, we have studied the conformation of two junctions by fluorescence resonance energy transfer. We show that the junctions are folded by pairwise coaxial helical stacking, forming one predominant stacking conformer in both examples studied. At low magnesium ion concentrations, the helical axes of both junctions are approximately perpendicular. One junction undergoes a rotation into a distorted antiparallel structure induced by the binding of a single magnesium ion. By contrast, the axes of the four-way junction of the U1 snRNA remain approximately perpendicular under all conditions examined, and we have determined the stacking conformer adopted.  相似文献   
58.
A cladistic analysis was carried out to resolve phylogenetic pattern among bryophytes and other land plants. The analysis used 22 taxa of land plants and 90 characters relating to male gametogenesis.Coleochaete orChara/Nitella were the outgroups in various analyses using HENNIG86, PAUP, and MacClade, and the land plant phylogeny was unchanged regardless of outgroup utilized. The most parsimonious cladograms from HENNIG86 (7 trees) have treelengths of 243 (C.I. = 0.58, R.I. = 0.82). Bryophytes are monophyletic as are hornworts, liverworts, and mosses, with hornworts identified as the sister group of a liverwort/moss assemblage. In vascular plants, lycophytes are polyphyletic andSelaginella is close to the bryophytes.Lycopodium is the sister group of the remaining vascular plants (minusSelaginella). Longer treelengths (over 250) are required to produce tree topologies in which either lycophytes are monophyletic or to reconstruct the paraphyletic bryophyte phylogeny of recent authors. This analysis challenges existing concepts of bryophyte phylogeny based on more classical data and interpretations, and provides new insight into land plant evolution.  相似文献   
59.
Summary An abnormal short-lived female infant with almost complete trisomy 13 (pterq32 or 33) and partial monosomy 15 (pterq14 or 15) resulting from an adjacent 2 meiotic disjunction of a paternal reciprocal translocation is described. Cases with monosomy of chromosome 15 material are reviewed. It appears likely that monosomy of an interstitial long arm segment, approximating to 15q2124, imparts the lethality associated with the full monosomic condition. Adjacent 2 disjunction in man has been further characterised by reviewing the literature.  相似文献   
60.
XIAP is a potent suppressor of apoptosis that directly inhibits specific members of the caspase family of cysteine proteases. Here we demonstrate a novel role for XIAP in the control of intracellular copper levels. XIAP was found to interact with MURR1, a factor recently implicated in copper homeostasis. XIAP binds to MURR1 in a manner that is distinct from that utilized by XIAP to bind caspases, and consistent with this, MURR1 did not affect the antiapoptotic properties of XIAP. However, cells and tissues derived from Xiap-deficient mice were found to contain reduced copper levels, while suppression of MURR1 resulted in increased intracellular copper in cultured cells. Consistent with these opposing effects, XIAP was observed to negatively regulate MURR1 protein levels by the formation of K48 polyubiquitin chains on MURR1 that promote its degradation. These findings represent the first described phenotypic alteration in Xiap-deficient mice and demonstrate that XIAP can function through MURR1 to regulate copper homeostasis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号