首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   2篇
  国内免费   1篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2015年   3篇
  2014年   1篇
  2013年   3篇
  2012年   4篇
  2011年   1篇
  2010年   3篇
  2008年   3篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   4篇
  2001年   4篇
  2000年   1篇
  1998年   2篇
  1997年   1篇
  1989年   1篇
  1985年   1篇
  1982年   1篇
  1977年   1篇
  1971年   1篇
排序方式: 共有48条查询结果,搜索用时 671 毫秒
31.
The activities of extracellular systems of hemicellulases, pectinases, and cellulases was studied during a 72-h cultivation of Geotrichum candidum3C. The culture was grown on a medium containing 3% cell walls isolated from wheat grain coats, which served as the sole carbon source. Enzymes catalyzing the degradation of pectin substances (beet pectin, -L-arabinan, and 1,4--D-galactan), as well as -D-galactosidase and -L-arabinofuranosidase involved in their hydrolysis, were formed first (4 h after the beginning of cultivation). Enzymes hydrolyzing 4-O-methyl--D-glucurono--D-xylan and sodium carboxymethyl xylan were also found in the culture liquid after 4 h of fungal growth. The contents of pectin-degrading and xylanolytic enzymes reached their maximum levels after 52–56 and 72 h of growth, respectively. Cellulolytic enzymes were detected after 8–28 h of cultivation. Enzymes degrading -D-galacto--D-mannan were found 24 h after the beginning of growth; their content was maximum after 72 h of cultivation.  相似文献   
32.
In eukaryotic ribosome, the N domain of polypeptide release factor eRF1 is involved in decoding stop signals in mRNAs. However, structure of the decoding site remains obscure. Here, we specifically altered the stop codon recognition pattern of human eRF1 by point mutagenesis of the invariant Glu55 and Tyr125 residues in the N domain. The 3D structure of generated eRF1 mutants was not destabilized as demonstrated by calorimetric measurements and calculated free energy perturbations. In mutants, the UAG response was most profoundly and selectively affected. Surprisingly, Glu55Arg mutant completely retained its release activity. Substitution of the aromatic ring in position 125 reduced response toward all stop codons. This result demonstrates the critical importance of Tyr125 for maintenance of the intact structure of the eRF1 decoding site. The results also suggest that Tyr125 is implicated in recognition of the 3d stop codon position and probably forms an H-bond with Glu55. The data point to a pivotal role played by the YxCxxxF motif (positions 125–131) in purine discrimination of the stop codons. We speculate that eRF1 decoding site is formed by a 3D network of amino acids side chains.  相似文献   
33.
34.
DNA-Protein Complex in Circular DNA from Phage ϕ29   总被引:27,自引:0,他引:27  
THE DNA of the B. subtilis phage ?29 has been described as unpermuted linear duplex molecules1 of molecular weight 11 × 106, but the formation of circular molecules has also been indicated, suggesting the existence of cohesive ends1,2.  相似文献   
35.
36.
Dense cultures of hepatocytes from old rats (~2 years old, body weight 530-610 g) are different from similar cultures of hepatocytes from young rats by the low amplitude of protein synthesis rhythm. Addition of glutamic acid (0.2, 0.4, or 0.6 mg/ml) into the culture medium with hepatocytes of old rats resulted in increase in the oscillation amplitudes of the protein synthesis rhythm to the level of young rats. A similar action of glutamic acid on the protein synthesis kinetics was observed in vivo after feeding old rats with glutamic acid. Inhibition of metabotropic receptors of glutamic acid with α-methyl-4-carboxyphenylglycine (0.01 mg/ml) abolished the effect of glutamic acid. The amplitude of oscillation of the protein synthesis rhythm in a cell population characterizes synchronization of individual oscillations caused by direct cell–cell communications. Hence, glutamic acid, acting as a receptor-dependent transmitter, enhanced direct cell–cell communications of hepatocytes that were decreased with aging. As differentiated from other known membrane signaling factors (gangliosides, norepinephrine, serotonin, dopamine), glutamic acid can penetrate into the brain and thus influence the communications and protein synthesis kinetics that are disturbed with aging not only in hepatocytes, but also in neurons.  相似文献   
37.
A method of purification of endo-( 1 → 4)-β-xylanase (endoxylanase; EC 3.2.1.8) from the culture liquid ofGeotrichum candidum 3C, grown for three days, is described. The enzyme, purified 23-fold, had a specific activity of 32.6 U per mg protein (yield, 14.4%). Endoxylanase was shown to be homogeneous by SDS-PAGE (molecular weight, 60 to 67 kDa). With carboxymethyl xylan as the substrate, the optimum activity (determined viscosimetrically) was recorded at pH 4.0 (pI 3.4). The enzyme retained stability at pH 3.0-4.5 and 30–45°C for 1 h. With xylan from birch wood, the hydrolytic activity of the enzyme (ability to saccharify the substrate) was maximum at 50°C. In 72 h of exposure to 0.2 mg/ml endoxylanase, the extent of saccharification of xylans from birch wood, rye grain, and wheat straw amounted to 10,12, and 7.7%, respectively. At 0.4 mg/ml, the extent of saccharification of birch wood xylan was as high as 20%. In the case of birch wood xylan, the initial hydrolysis products were xylooligosaccharides with degrees of polymerization in excess of four; the end products were represented by xylobiose, xylotriose, xylose, and acid xylooligosaccharides.  相似文献   
38.
为了明确具有极强抗虫特性的‘草原4号紫花苜蓿’(Medicago sativa L.‘Caoyuan No.4’) 营养器官的解剖特征,该研究选择具有抗蓟马特性较强的‘草原2号杂花苜蓿’(Medicago varia Martin.‘Caoyuan No.2’)为对照,采用显微镜观察比较两品种的根、茎、叶解剖结构特征,为揭示‘草原4号紫花苜蓿’ 抗蓟马特性提供理论依据。结果显示:(1)‘草原4号紫花苜蓿’根部解剖结构的皮层薄壁细胞厚度、内皮层厚度、形成层厚度、木质部厚度和木射线宽度等5个指标均极显著高于(P<0.01)‘草原2号杂花苜蓿’,其中木射线宽度(159.37 μm)是‘草原2号杂花苜蓿’的1.82倍。(2)‘草原4号紫花苜蓿’的茎部厚角组织厚度(21.4 μm)极显著高于‘草原2号杂花苜蓿’(P<0.01),而韧皮部宽度、髓直径却均极显著低于‘草原2号杂花苜蓿’(P<0.01)。(3)‘草原4号紫花苜蓿’叶片解剖构造的7个指标均极显著高于‘草原2号杂花苜蓿’(P<0.01),其中栅栏组织层数(2~3层)极明显地高于‘草原2号杂花苜蓿’(1~2层)。研究表明,‘草原4号紫花苜蓿’的组织结构特征具有明显的抗虫特征,且其组织的抗虫特征比‘草原2号杂花苜蓿’更为突出。  相似文献   
39.
Translation termination in eukaryotes is governed by the concerted action of eRF1 and eRF3 factors. eRF1 recognizes the stop codon in the A site of the ribosome and promotes nascent peptide chain release, and the GTPase eRF3 facilitates this peptide release via its interaction with eRF1. In addition to its role in termination, eRF3 is involved in normal and nonsense-mediated mRNA decay through its association with cytoplasmic poly(A)-binding protein (PABP) via PAM2-1 and PAM2-2 motifs in the N-terminal domain of eRF3. We have studied complex formation between full-length eRF3 and its ligands (GDP, GTP, eRF1 and PABP) using isothermal titration calorimetry, demonstrating formation of the eRF1:eRF3:PABP:GTP complex. Analysis of the temperature dependence of eRF3 interactions with G nucleotides reveals major structural rearrangements accompanying formation of the eRF1:eRF3:GTP complex. This is in contrast to eRF1:eRF3:GDP complex formation, where no such rearrangements were detected. Thus, our results agree with the established active role of GTP in promoting translation termination. Through point mutagenesis of PAM2-1 and PAM2-2 motifs in eRF3, we demonstrate that PAM2-2, but not PAM2-1 is indispensible for eRF3:PABP complex formation.  相似文献   
40.
The action of a current in the radio frequency range with a periodic impulse mode of modulation on the activation of recovery processes in the skin and skeletal muscles has been studied. The action of a radio frequency current with a power of 1 W, as opposed to that of the weaker action (0.1 W) and stronger (4 W) action, leads to the activation of recovery processes in the skin and skeletal muscles. Recovery processes are manifested in the increase in proliferation and activation of angiogenesis in the skin, and also in formation of new muscle fibers. Recovery processes in muscles are accompanied by activation and migration of satellite cells of muscle tissue in the zone of action of the radio frequency current.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号