首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9921篇
  免费   846篇
  国内免费   10篇
  10777篇
  2022年   56篇
  2021年   109篇
  2020年   52篇
  2019年   73篇
  2018年   101篇
  2017年   91篇
  2016年   158篇
  2015年   263篇
  2014年   341篇
  2013年   466篇
  2012年   554篇
  2011年   565篇
  2010年   388篇
  2009年   362篇
  2008年   563篇
  2007年   553篇
  2006年   537篇
  2005年   555篇
  2004年   515篇
  2003年   540篇
  2002年   485篇
  2001年   128篇
  2000年   135篇
  1999年   189篇
  1998年   169篇
  1997年   138篇
  1996年   123篇
  1995年   109篇
  1994年   108篇
  1993年   98篇
  1992年   116篇
  1991年   114篇
  1990年   112篇
  1989年   109篇
  1988年   109篇
  1987年   64篇
  1986年   73篇
  1985年   86篇
  1984年   109篇
  1983年   87篇
  1982年   108篇
  1981年   95篇
  1980年   84篇
  1979年   62篇
  1978年   73篇
  1977年   74篇
  1976年   59篇
  1975年   64篇
  1974年   59篇
  1973年   67篇
排序方式: 共有10000条查询结果,搜索用时 10 毫秒
991.
Cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels are essential mediators of salt transport across epithelia. Channel opening normally requires ATP binding to both nucleotide-binding domains (NBDs), probable dimerization of the two NBDs, and phosphorylation of the R domain. How phosphorylation controls channel gating is unknown. Loss-of-function mutations in the CFTR gene cause cystic fibrosis; thus, there is considerable interest in compounds that improve mutant CFTR function. Here we investigated the mechanism by which CFTR is activated by curcumin, a natural compound found in turmeric. Curcumin opened CFTR channels by a novel mechanism that required neither ATP nor the second nucleotide-binding domain (NBD2). Consequently, this compound potently activated CF mutant channels that are defective for the normal ATP-dependent mode of gating (e.g. G551D and W1282X), including channels that lack NBD2. The stimulation of NBD2 deletion mutants by curcumin was strongly inhibited by ATP binding to NBD1, which implicates NBD1 as a plausible activation site. Curcumin activation became irreversible during prolonged exposure to this compound following which persistently activated channels gated dynamically in the absence of any agonist. Although CFTR activation by curcumin required neither ATP binding nor heterodimerization of the two NBDs, it was strongly dependent on prior channel phosphorylation by protein kinase A. Curcumin is a useful functional probe of CFTR gating that opens mutant channels by circumventing the normal requirements for ATP binding and NBD heterodimerization. The phosphorylation dependence of curcumin activation indicates that the R domain can modulate channel opening without affecting ATP binding to the NBDs or their heterodimerization.  相似文献   
992.
Three Solanum genotypes with various polygenic resistance levels to the oomycete pathogen Phytophthora infestans (Mont.) De Bary were studied for their antioxidant response to the pathogen culture filtrate (CF). Detached plant leaves were treated with CF for 6, 18 and 30 h, and assayed for changes in hydrogen peroxide content, total ascorbate and glutathione pools and redox ratios (reduced form to total pool), as well as for changes in activities of ascorbate peroxidase, glutathione reductase and glutathione-S-transferase. In CF treated leaves of non-host resistant S. nigrum var. gigantea and field resistant S. tuberosum cv Bzura, the H(2)O(2) content did not change in comparison to water treated control leaves, whereas in the susceptible S. tuberosum clone H-8105 it decreased below the control level. In CF treated leaves of all genotypes, the total ascorbate pools were relatively unaltered and their redox ratio changed only transiently. In Bzura leaves the total glutathione content increased earlier than in the two other genotypes. The glutathione redox ratio remained rather stable, except for the susceptible clone H-8105, where it decreased transiently by about 42%. The relative increases in activity of all the studied enzymes were the highest in the susceptible clone H-8105. The results are discussed in the light of oxidative processes occurring in CF treated leaves. We conclude that stringent control of pro- and anti-oxidant reactions bringing the H(2)O(2) and/or cellular redox state to the threshold level is decisive for deployment of an effective defense strategy.  相似文献   
993.
The presequence translocase of the mitochondrial inner membrane (TIM23 complex) mediates the import of preproteins with amino-terminal presequences. To drive matrix translocation the TIM23 complex recruits the presequence translocase-associated motor (PAM) with the matrix heat shock protein 70 (mtHsp70) as central subunit. Activity and localization of mtHsp70 are regulated by four membrane-associated cochaperones: the adaptor protein Tim44, the stimulatory J-complex Pam18/Pam16, and Pam17. It has been proposed that Tim44 serves as molecular platform to localize mtHsp70 and the J-complex at the TIM23 complex, but it is unknown how Pam17 interacts with the translocase. We generated conditional tim44 yeast mutants and selected a mutant allele, which differentially affects the association of PAM modules with TIM23. In tim44-804 mitochondria, the interaction of the J-complex with the TIM23 complex is impaired, whereas unexpectedly the binding of Pam17 is increased. Pam17 interacts with the channel protein Tim23, revealing a new interaction site between TIM23 and PAM. Thus, the motor PAM is composed of functional modules that bind to different sites of the translocase. We suggest that Tim44 is not simply a scaffold for binding of motor subunits but plays a differential role in the recruitment of PAM modules to the inner membrane translocase.  相似文献   
994.
995.
Changes in endothelial glycocalyx are one of the earliest changes in development of cardiovascular disease. The endothelial glycocalyx is both an important biological modifier of interactions between flowing blood and the vessel wall, and a determinant of organ perfusion. We hypothesize that deeper penetration of erythrocytes into the glycocalyx is associated with reduced microvascular perfusion. The population-based prospective cohort study (the Netherlands Epidemiology of Obesity [NEO] study) includes 6,673 middle-aged individuals (oversampling of overweight and obese individuals). Within this cohort, we have imaged the sublingual microvasculature of 915 participants using sidestream darkfield (SDF) imaging together with a recently developed automated acquisition and analysis approach. Presence of RBC (as a marker of microvascular perfusion) and perfused boundary region (PBR), a marker for endothelial glycocalyx barrier properties for RBC accessibility, were assessed in vessels between 5 and 25 µm RBC column width. A wide range of variability in PBR measurements, with a mean PBR of 2.14 µm (range: 1.43–2.86 µm), was observed. Linear regression analysis showed a marked association between PBR and microvascular perfusion, reflected by RBC filling percentage (regression coefficient β: −0.034; 95% confidence interval: −0.037 to −0.031). We conclude that microvascular beds with a thick (“healthy”) glycocalyx (low PBR), reflects efficient perfusion of the microvascular bed. In contrast, a thin (“risk”) glycocalyx (high PBR) is associated with a less efficient and defective microvascular perfusion.  相似文献   
996.
The aim of this study was to elucidate how the spatial scale and the set of variables included influence our ability to detect the effects of different types of pollution on the biota. Using variance partitioning analysis, we assessed the individual importance of a set of environmental factors (eutrophication and organic pollution) versus metal level pollution on the community structure of diatom assemblages at different spatial scales. At regional scale, environmental factors did not explain more of the variance compared to the watershed study. The results of the watershed scale field survey indicate that diatom community composition was influenced by low metal concentrations, but this pattern was only observed by the inclusion of biofilm metal concentration data. We recommend the analysis of metal traces in the water phase and the biota (fluvial biofilms) as well as the use of the Diffusive Gradient in Thin films (DGT) technique to characterize low metal level pollution in freshwater systems. Handling editor: Judit Padisák  相似文献   
997.
The vegetative mycelium of Sphaerostilbe repens Berkeley and Broome (strain CBS 275-60) gives rise, within 48 h, to aggregated organs composed of coremia and rhi-zomorphs. Developmental changes in polypeptide patterns were studied by one- and two-dimensional polyacrylamide gel electrophoresis after cells had been induced to undergo synchronized differentiation. One-dimensional gel electrophoresis revealed only minor changes during the morphogenesis. Of the 300 polypeptides resolved by two-dimensional gel electrophoresis, nearly 12% either increased or decreased during coremium and rhizomorph differentiation. Some polypeptides appeared to be unique to one or the other of the cell preparations and represented apparent qualitative differences. During the first 24 h of differentiation, about 20 polypeptide spots appeared, 6 were enhanced, 4 were reduced and 32 disappeared. Over the next 24 h changes in the population of proteins were less marked: 14 new proteins were revealed and 9 increased in intensity while 15 declined and 9 were no longer detectable. Five proteins which were present at a significant level only during the first stages of differentiation, may therefore, putatively be designated as aggregation-specific polypeptides.  相似文献   
998.
Introduction of an O-alkoxyphenyl substituent at the 8-position of the 2-morpholino-4H-chromen-4-one pharmacophore enabled regions of the ATP-binding site of DNA-dependent protein kinase (DNA-PK) to be probed further. Structure-activity relationships have been elucidated for inhibition of DNA-PK and PI3K (p110α), with N-(2-(cyclopropylmethoxy)-4-(2-morpholino-4-oxo-4H-chromen-8-yl)phenyl)-2-morpholinoacetamide 11a being identified as a potent and selective DNA-PK inhibitor (IC50 = 8 nM).  相似文献   
999.
We aimed to study the role of the nucleotide receptor P2Y2R in the development of experimental autoimmune uveitis (EAU). EAU was induced in P2Y2+/+ and P2Y2-/- mice by immunization with IRBP peptide or by adoptive transfer of in vitro restimulated semi-purified IRBP-specific enriched T lymphocytes from spleens and lymph nodes isolated from native C57Bl/6 or P2Y2+/+ and P2Y2-/- immunized mice. Clinical and histological scores were used to grade disease severity. Splenocytes and lymph node cell phenotypes were analyzed using flow cytometry. Semi-purified lymphocytes and MACS-purified CD4+ T lymphocytes from P2Y2+/+ and P2Y2-/- immunized mice were tested for proliferation and cytokine secretion. Our data show that clinical and histological scores were significantly decreased in IRBP-immunized P2Y2-/- mice as in P2Y2-/- mice adoptively transfered with enriched T lymphocytes from C57Bl/6 IRBP-immunized mice. In parallel, naïve C57Bl/6 mice adoptively transferred with T lymphocytes from P2Y2-/- IRBP-immunized mice also showed significantly less disease. No differences in term of spleen and lymph node cell recruitment or phenotype appeared between P2Y2-/- and P2Y2+/+ immunized mice. However, once restimulated in vitro with IRBP, P2Y2-/- T cells proliferate less and secrete less cytokines than the P2Y2+/+ one. We further found that antigen-presenting cells of P2Y2-/- immunized mice were responsible for this proliferation defect. Together our data show that P2Y2-/- mice are less susceptible to mount an autoimmune response against IRBP. Those results are in accordance with the danger model, which makes a link between autoreactive lymphocyte activation, cell migration and the release of danger signals such as extracellular nucleotides.  相似文献   
1000.
Mechanisms of action of plant growth promoting bacteria   总被引:1,自引:0,他引:1  
The idea of eliminating the use of fertilizers which are sometimes environmentally unsafe is slowly becoming a reality because of the emergence of microorganisms that can serve the same purpose or even do better. Depletion of soil nutrients through leaching into the waterways and causing contamination are some of the negative effects of these chemical fertilizers that prompted the need for suitable alternatives. This brings us to the idea of using microbes that can be developed for use as biological fertilizers (biofertilizers). They are environmentally friendly as they are natural living organisms. They increase crop yield and production and, in addition, in developing countries, they are less expensive compared to chemical fertilizers. These biofertilizers are typically called plant growth-promoting bacteria (PGPB). In addition to PGPB, some fungi have also been demonstrated to promote plant growth. Apart from improving crop yields, some biofertilizers also control various plant pathogens. The objective of worldwide sustainable agriculture is much more likely to be achieved through the widespread use of biofertilizers rather than chemically synthesized fertilizers. However, to realize this objective it is essential that the many mechanisms employed by PGPB first be thoroughly understood thereby allowing workers to fully harness the potentials of these microbes. The present state of our knowledge regarding the fundamental mechanisms employed by PGPB is discussed herein.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号