首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1190篇
  免费   152篇
  1342篇
  2022年   7篇
  2021年   17篇
  2019年   12篇
  2018年   15篇
  2017年   11篇
  2016年   14篇
  2015年   34篇
  2014年   45篇
  2013年   56篇
  2012年   50篇
  2011年   63篇
  2010年   48篇
  2009年   35篇
  2008年   60篇
  2007年   62篇
  2006年   47篇
  2005年   52篇
  2004年   60篇
  2003年   60篇
  2002年   57篇
  2001年   26篇
  2000年   23篇
  1999年   17篇
  1998年   12篇
  1997年   21篇
  1996年   18篇
  1995年   18篇
  1994年   13篇
  1993年   16篇
  1992年   15篇
  1991年   18篇
  1990年   22篇
  1989年   10篇
  1988年   13篇
  1987年   16篇
  1986年   14篇
  1985年   19篇
  1984年   21篇
  1983年   21篇
  1982年   17篇
  1981年   12篇
  1980年   9篇
  1979年   13篇
  1978年   13篇
  1977年   10篇
  1976年   14篇
  1975年   8篇
  1974年   11篇
  1973年   12篇
  1972年   9篇
排序方式: 共有1342条查询结果,搜索用时 15 毫秒
101.
Interest in developing diverse nanoparticle (NP)-biological composite materials continues to grow almost unabated. This is motivated primarily by the desire to simultaneously exploit the properties of both NP and biological components in new hybrid devices or materials that can be applied in areas ranging from energy harvesting and nanoscale electronics to biomedical diagnostics. The utility and effectiveness of these composites will be predicated on the ability to assemble these structures with control over NP/biomolecule ratio, biomolecular orientation, biomolecular activity, and the separation distance within the NP-bioconjugate architecture. This degree of control will be especially critical in creating theranostic NP-bioconjugates that, as a single vector, are capable of multiple functions in vivo, including targeting, image contrast, biosensing, and drug delivery. In this review, a perspective is given on current and developing chemistries that can provide improved control in the preparation of NP-bioconjugates. The nanoscale properties intrinsic to several prominent NP materials are briefly described to highlight the motivation behind their use. NP materials of interest include quantum dots, carbon nanotubes, viral capsids, liposomes, and NPs composed of gold, lanthanides, silica, polymers, or magnetic materials. This review includes a critical discussion on the design considerations for NP-bioconjugates and the unique challenges associated with chemistry at the biological-nanoscale interface-the liabilities of traditional bioconjugation chemistries being particularly prominent therein. Select bioorthogonal chemistries that can address these challenges are reviewed in detail, and include chemoselective ligations (e.g., hydrazone and Staudinger ligation), cycloaddition reactions in click chemistry (e.g., azide-alkyne cyclyoaddition, tetrazine ligation), metal-affinity coordination (e.g., polyhistidine), enzyme driven modifications (e.g., HaloTag, biotin ligase), and other site-specific chemistries. The benefits and liabilities of particular chemistries are discussed by highlighting relevant NP-bioconjugation examples from the literature. Potential chemistries that have not yet been applied to NPs are also discussed, and an outlook on future developments in this field is given.  相似文献   
102.
The soybean cyst nematode Heterodera glycines (SCN) is of major economic importance and widely distributed throughout soybean production regions of the United States where different maturity groups with the same sources of SCN resistance are grown. The objective of this study was to assess SCN-resistant and -susceptible soybean yield responses in infested soils across the north-central region. In 1994 and 1995, eight SCN-resistant and eight SCN-susceptible public soybean cultivars representing maturity groups (MG) I to IV were planted in 63 fields, either infested or noninfested, in 10 states in the north-central United States. Soil samples were taken to determine initial SCN population density and race, and soil classification. Data were grouped for analysis by adaptation based on MG zones. Soybean yields were 658 to 3,840 kg/ha across the sites. Soybean cyst nematode-resistant cultivars yielded better at SCN-infested sites but lost this superiority to susceptible soybean cultivars at noninfested sites. Interactions were observed among initial SCN population density, cultivar, and location. This study showed that no region-wide predictive equations could be developed for yield loss based on initial nematode populations in the soil and that yield loss due to SCN in our region was greatly confounded by other stress factors, which included temperature and moisture extremes.  相似文献   
103.
Abstract The regulatory properties of Rhodospirillum rubrum nitrogenase reduced by either the endogenous electron donor (ferredoxin) or an artificial donor (dithionite) were examined. The nitrogenase obtained from glutamate-grown cells required activating enzyme for maximum activity with either reductant. The activating enzyme requirement of ferredoxin-dependent nitrogenase activity implies a physiological significance of the activating enzyme in R. rubrum. Rhodopseudomonas capsulata nitrogenase also required activating enzyme when dithionite was the reductant, but there appeared to be no activating enzyme requirement with ferredoxin as the reductant. Because the catalytic activity of the enzyme was very low under these conditions, the physiological significance of activating enzyme in this organism remains in question.  相似文献   
104.
Synthesis of bile salts is regulated through negative feedback inhibition by bile salts returning to the liver. Individual bile salts have not been distinguished with regard to inhibitory potential. We assessed inhibition of bile salt synthesis by either cholate or its taurine conjugate in bile fistula rats. After allowing synthesis to maximize, baseline synthesis was determined by measuring bile salt output in four consecutive 6-hr periods. Next, sodium cholate (+[(14)C]cholate) or taurocholate (+[(14)C]taurocholate) was infused into the jugular vein for 36 hr and bile was collected in 6-hr aliquots. Hepatic flux of exogenous bile salt was determined by measuring output of radioactivity in bile divided by specific activity of the infusate. Synthesis was determined during the last four 6-hr periods of infusion by subtracting exogenous bile salt secretion from the total bile salt output. Thirteen studies using cholate and 13 using taurocholate were performed. Hepatic flux of infused bile salt varied from 1 to 12 micro mol/100 g per rat per hr. Percent suppression of synthesis varied directly with hepatic flux of exogenous bile salt for both cholate and taurocholate in a linear fashion (r = 0.66, P < 0.01 and r = 0.87, P < 0.0005, respectively). Slope of the taurocholate line was 7.82 (% suppression/ micro mol per 100 g per hr), while slope of the cholate line was 3.66 (P < 0.05), indicating that taurocholate was approximately twice as potent as cholate in suppression of synthesis. At fluxes of 10-12 micro mol/100 g per hr, taurocholate suppressed synthesis 84 +/- 8 (SEM) % while cholate suppressed synthesis only 42 +/- 12% (P < 0.02). The x-intercept of the taurocholate line was 0.65 ( micro mol/100 g per hr), while that of the cholate line was -1.01 (NS) suggesting that the threshold for initial suppression of synthesis did not differ for these two bile salts. We conclude that taurocholate is a more effective inhibitor of hepatic bile salt synthesis than cholate, and that intestinal deconjugation of bile salts may play a role in the regulation of synthesis.-Pries, J. M., A. Gustafson, D. Wiegand, and W. C. Duane. Taurocholate is more potent than cholate in suppression of bile salt synthesis in the rat.  相似文献   
105.
Nineteen linkage groups containing a total of 52 markers have been identified in the sheep genome after typing large paternal half-sib families. The linkage groups range in size from 2 markers showing no recombination to a group containing 6 markers covering approximately 30 cM of the sheep genome. Thirteen of the groups have been assigned to a sheep chromosome. Three groups contain markers from bovine syntenic groups U2, U7 and U29, and one other group contains a marker that has been mapped only in humans. The remaining three groups are unassigned. This information will provide a useful foundation for a genetic linkage map of sheep.  相似文献   
106.
To determine the effect of paralysis on body composition, eight pairs of male monozygotic twins, one twin in each pair with paraplegia, were studied by dual-energy X-ray absorptiometry. Significant loss of total body lean tissue mass was found in the paralyzed twins compared with their able-bodied co-twins: 47.5 +/- 6. 7 vs. 60.1 +/- 7.8 (SD) kg (P < 0.005). Regionally, arm lean tissue mass was not different between the twin pairs, whereas trunk and leg lean tissue masses were significantly lower in the paralyzed twins: -3.0 +/- 3.3 kg (P < 0.05) and -10.1 +/- 4.0 kg (P < 0.0005), respectively. Bone mineral content of the total body and legs was significantly related to lean tissue mass in the able-bodied twins (R = 0.88 and 0.98, respectively) but not in the paralyzed twins. However, the intrapair difference scores for bone and lean tissue mass were significantly related (R = 0.80 and 0.81, respectively). The paralyzed twins had significantly more total body fat mass and percent fat per unit body mass index than the able-bodied twins: 4.8 kg (P < 0.05) and 7 +/- 2% (P < 0.01). In the paralyzed twins, total body lean tissue was significantly lost (mostly from the trunk and legs), independent of age, at a rate of 3.9 +/- 0.2 kg per 5-yr period of paralysis (R = 0.87, P < 0.005). Extreme disuse from paralysis appears to contribute to a parallel loss of bone with loss of lean tissue in the legs. The continuous lean tissue loss may represent a form of sarcopenia that is progressive and accelerated compared with that in ambulatory individuals.  相似文献   
107.
Abstract. Question: How do Coriaria arborea, an N‐fixing native shrub, and Buddleja davidii, a non‐N‐fixing exotic shrub, affect N:P stoichiometry in plants and soils during early stages of primary succession on a flood‐plain? Location: Kowhai River Valley, northeast South Island, New Zealand. Methods: We measured soil and foliar nutrient concentrations, light levels, plant community composition and the above‐ground biomass of Coriaria and Buddleja in four successional stages: open, young, vigorous and mature. Results: Coriaria occurred at low density but dominated above‐ground biomass by the vigorous stage. Buddleja occurred at 5.3 ± 1.0 stems/m2 in the young stage and reached a maximum biomass of 520–535 g.m‐2 during the young and vigorous stages. Mineral soil N increased with above‐ground Coriaria biomass (r2= 0.45), but did not vary with Buddleja biomass. In contrast, soil P increased with Buddleja biomass (r2= 0.35), but not with Coriaria biomass. In early successional stages, 70–80% of the species present were exotic, but this declined to about 15% by the mature stage. Exotic plant species richness declined with increasing Coriaria biomass, but no other measures of diversity varied with either Coriaria or Buddleja biomass. Conclusion: These results demonstrate that Buddleja dominates early succession and accumulates P whereas Coriaria dominates later succession and accumulates N. A key ecosystem effect of the invasive exotic Buddleja is alteration of soil N:P stoichiometry.  相似文献   
108.
Complex tetracyclic sulfones were designed as γ-secretase inhibitors and a stereoselective synthesis was achieved. γ-Secretase activity was seen predominately in the (?) enantiomeric series. Compounds such as 2a and 2b showed remarkable in vitro and in vivo potency.  相似文献   
109.

Background

Porcine xenografts are a promising source of scarce transplantable organs, but stimulate intense thrombosis of human blood despite targeted genetic and pharmacologic interventions. Current experimental models do not enable study of the blood/endothelial interface to investigate adhesive interactions and thrombosis at the cellular level under physiologic conditions. The purpose of this study was to develop and validate a live-cell, shear-flow based thrombosis assay relevant to general thrombosis research, and demonstrate its potential in xenotransplantation applications.

Methodology/Principal Findings

Confluent wild-type (WT, n = 48) and Gal transferase knock-out (GalTKO, which resist hyperacute rejection; n = 11) porcine endothelia were cultured in microfluidic channels. To mimic microcirculatory flow, channels were perfused at 5 dynes/cm2 and 37°C with human blood stained to fluorescently label platelets. Serial fluorescent imaging visualized percent surface area coverage (SA, for adhesion of labeled cells) and total fluorescence (a metric of clot volume). Aggregation was calculated by the fluorescence/SA ratio (FR). WT endothelia stimulated diffuse platelet adhesion (SA 65 ± 2%) and aggregation (FR 120 ± 1 a.u.), indicating high-grade thrombosis consistent with the rapid platelet activation and consumption seen in whole-organ lung xenotransplantation models. Experiments with antibody blockade of platelet aggregation, and perfusion of syngeneic and allo-incompatible endothelium was used to verify the biologic specificity and validity of the assay. Finally, with GalTKO endothelia thrombus volume decreased by 60%, due primarily to a 58% reduction in adhesion (P < 0.0001 each); importantly, aggregation was only marginally affected (11% reduction, P < 0.0001).

Conclusions/Significance

This novel, high-throughput assay enabled dynamic modeling of whole-blood thrombosis on intact endothelium under physiologic conditions, and allowed mechanistic characterization of endothelial and platelet interactions. Applied to xenogeneic thrombosis, it enables future studies regarding the effect of modifying the porcine genotype on sheer-stress-dependent events that characterize xenograft injury. This in-vitro platform is likely to prove broadly useful to study thrombosis and endothelial interactions under dynamic physiologic conditions.  相似文献   
110.
Current molecular methods to characterize microalgae are time-intensive and expensive. Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) may represent a rapid and economical alternative approach. The objectives of this study were to determine whether MALDI-TOF MS can be used to: 1) differentiate microalgae at the species and strain levels and 2) characterize simple microalgal mixtures. A common protein extraction sample preparation method was used to facilitate rapid mass spectrometry-based analysis of 31 microalgae. Each yielded spectra containing between 6 and 56 peaks in the m/z 2,000 to 20,000 range. The taxonomic resolution of this approach appeared higher than that of 18S rDNA sequence analysis. For example, two strains of Scenedesmus acutus differed only by two 18S rDNA nucleotides, but yielded distinct MALDI-TOF mass spectra. Mixtures of two and three microalgae yielded relatively complex spectra that contained peaks associated with members of each mixture. Interestingly, though, mixture-specific peaks were observed at m/z 11,048 and 11,230. Our results suggest that MALDI-TOF MS affords rapid characterization of individual microalgae and simple microalgal mixtures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号