首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   113030篇
  免费   8671篇
  国内免费   7037篇
  2024年   143篇
  2023年   1304篇
  2022年   3275篇
  2021年   5563篇
  2020年   3664篇
  2019年   4478篇
  2018年   4453篇
  2017年   3323篇
  2016年   4712篇
  2015年   6837篇
  2014年   8061篇
  2013年   8522篇
  2012年   10180篇
  2011年   9085篇
  2010年   5595篇
  2009年   4889篇
  2008年   5740篇
  2007年   5048篇
  2006年   4479篇
  2005年   3445篇
  2004年   3011篇
  2003年   2595篇
  2002年   2270篇
  2001年   2048篇
  2000年   1907篇
  1999年   1893篇
  1998年   1053篇
  1997年   1158篇
  1996年   1046篇
  1995年   940篇
  1994年   959篇
  1993年   682篇
  1992年   1009篇
  1991年   848篇
  1990年   626篇
  1989年   570篇
  1988年   493篇
  1987年   421篇
  1986年   397篇
  1985年   398篇
  1984年   212篇
  1983年   197篇
  1982年   137篇
  1981年   116篇
  1980年   107篇
  1979年   119篇
  1978年   78篇
  1977年   60篇
  1974年   74篇
  1972年   62篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
931.
Plant growth-promoting rhizobacteria (PGPR) can help plants to resist drought stress. However, the mechanisms of how PGPR inoculation affect plant status under drought remain incompletely understood. We performed a meta-analysis of plant response to PGPR inoculation by compiling data from 57 PGPR-inoculation studies, including 2, 387 paired observations on morphological, physiological and biochemical parameters under drought and well-watered conditions. We compare the PGPR effect on plants performances among different groups of controls and treatments. Our results reveal that PGPR enables plants to restore themselves from drought-stressed to near a well-watered state, and that C4 plants recover better from drought stress than C3 plants. Furthermore, PGPR is more effective underdrought than well-watered conditions in increasing plant biomass, enhancing photosynthesis and inhibiting oxidant damage, and the responses of C4 plants to the PGPR effect was stronger than that of C3 plants under drought conditions. Additionally, PGPR belonging to different taxa and PGPR with different functional traits have varying degrees of drought-resistance effects on plants. These results are important to improve our understanding of the PGPR beneficial effects on enhanced drought-resistance of plants.  相似文献   
932.
Rhizosphere effect of nanoscale zero-valent iron (nZVI) is crucial but little reported. Maize seeds were dressed with four nZVI concentrations (0, 1.0, 1.5, 2 g kg−1) and inoculated with arbuscular mycorrhizal fungus (AMF) (Funneliformis mosseae). The SEM images illuminated that excessive nZVI particles (2 g kg−1) were agglomerated on the surface of hyphae and spore, causing severe deformation and inactivation of AMF symbionts and thereafter inhibiting water uptake in maize seedlings. This restrained the scavenging effects of enzymatic (superoxide dismutase, peroxidase) and non-enzymatic compounds (proline & malondialdehyde) on ROS, and leaf photoreduction activity and gas exchange ability (p < 0.05). Interestingly, the inoculation with AMF effectively alleviated above negative effects. In contrast, appropriate dose of nZVI, that is, ≤1.5 g kg−1, can be evenly distributed on the hyphae surface and form the ordered symbionts with AMF. This help massively to enhance hyphae growth and water and nutrient uptake. The enhanced mycorrhizal infection turned to promote rhizosphere symbiont activity and leaf Rubisco and Rubisco activase activity. Light compensation point was massively lowered, which increased photosynthetic carbon supply for AMF symbionts. Particularly, such priming effects were evidently enhanced by drought stress. Our findings provided a novel insight into functional role of nZVI in agriculture and AMF-led green production.  相似文献   
933.
Fan  Pengfei  Chen  Yuan  Ma  Haigang  Chen  Tao  Huang  Xia  Wang  Zhining 《International journal of primatology》2023,44(1):171-174
International Journal of Primatology -  相似文献   
934.
Desert algae are important components of the desert soil crust and play an essential role in desert soil ecosystem development. Owing to their special habitat, desert algae are often exposed to harsh environments, among which drought represents the most common stress. Green algae are considered to have drought tolerance potential; however, only a few studies have investigated this. In this study, we selected the green alga Chlorella sp., which was isolated from desert soil, and studied its physiological response to polyethylene glycol (PEG) 6000-induced drought stress. The results showed that drought stress can affect the photosynthetic efficiency of Chlorella sp., reduce its water retention ability, and destroy its ultrastructure. However, Chlorella sp. can cope with drought stress through a series of physiological regulatory strategies. Protective strategies include quick recovery of photosynthetic efficiency and increased chlorophyll content. In addition, induced synthesis of soluble proteins, lipids, and extracellular polysaccharide (EPS), and accumulation of osmotic regulatory substances, such as sucrose and trehalose, also contribute to improving drought tolerance in Chlorella sp. This study provides insights into the physiological responses of Chlorella sp. to drought stress, which may be valuable for understanding the underlying drought adaptation mechanisms of desert green algae.  相似文献   
935.
Prohibited pesticide residues have become one of the main factors affecting the quality and safety of Lycii Fructus, However, rarely studies focus on the rapid determination of these residues. Here, a total of 30 kinds of prohibited pesticide residues were determined by ultra-performance liquid chromatography tandem triple quadrupole mass spectrometry (UPLC-MS/MS) in five different process ways. Pretreatment methods, chromatographic separation and detection conditions in mass spectrometry were all optimized accordingly. Among the five different pretreatment methods, the first and third solid phase extraction failed to provide high recoveries of sulfosulfuron compounds (both lower than 60%). Recovery of chlorphenamidine by the Quick Easy Cheap Effective Rugged and Safe multiresidue method (QuEChERS) was lower than 60%, which did not meet the requirements of trace determination. The concentrations of 30 prohibited pesticides residues treated by straightforward and solid phase extraction showed good linearity in their corresponding ranges, with correlation coefficients over 0.99. The average recoveries of straightforward ranged from 78.13% to 110.9%, while RSD ranged from 1.3% to 16.9%, albeit poor purification was observed. The recovery yield from solid phase extraction was between 67.75% and 103.08% with RSD value from 0.8% to 14.0%, which met the requirements of trace determination, this method has good precision and stability. These results could be employed to other Traditional Chinese Medicines (TCMs) in detecting prohibited pesticide residues.  相似文献   
936.
Fruit spine is an important quality trait of cucumber. To better understand the molecular basis of cucumber spine development and function, RNA-Seq was performed to identify differentially expressed genes (DEGs) in fruit spines of different development stages, namely, 8 days before anthesis (SpBA8), anthesis (SpA) and 8 days after anthesis (SpAA8). Stage-wise comparisons obtained 2,259 (SpBA8 vs. SpA), 4,551 (SpA vs. SpAA8), and 5,290 (SpBA8 vs. SpAA8) DEGs. All the DEGs were classified into eight expression clusters by trend analysis. Among these DEGs, in addition to the Mict, Tril, CsTTG1, CsMYB6, NS, and Tu genes that have been reported to regulate fruit spine formation, we found that the CsHDG11, CsSCL8, CsSPL8, CsZFP6 and CsZFP8 may also be involved in spine development in cucumber. Our study provides a theoretical basis for further research on molecular mechanisms of spine development in cucumber.  相似文献   
937.

Continuous cropping (CC) obstacle is a major threat in legume crops production; however, the underlying mechanisms concerning the roles allelochemicals play in CC obstacle are poorly understood. The current 2-year study was conducted to investigate the effects of different kinds and concentrations of allelochemicals, p-hydroxybenzoic acid (H), cinnamic acid (C), phthalic acid (P), and their mixtures (M) on peanut root growth and productivity in response to CC obstacle. Treatment with H, C, P, and M significantly decreased the plant height, dry weight of the leaves and stems, number of branches, and length of the lateral stem compared with control. Exogenous application of H, C, P, and M inhibited the peanut root growth as indicated by the decreased root morphological characters. The allelochemicals also induced the cell membrane oxidation even though the antioxidant enzymes activities were significantly increased in peanut roots. Meanwhile, treatment with H, C, P, and M reduced the contents of total soluble sugar and total soluble protein. Analysis of ATPase activity, nitrate reductase activity, and root system activity revealed that the inhibition effects of allelochemicals on peanut roots might be due to the decrease in activities of ATPase and NR, and the inhibition of root system. Consequently, allelochemicals significantly decreased the pod yield of peanut compared with control. Our results demonstrate that allelochemicals play a dominant role in CC obstacle-induced peanut growth inhibition and yield reduction through damaging the root antioxidant system, unbalancing the osmolytes accumulation, and decreasing the activities of root-related enzymes.

  相似文献   
938.
Fatty Acyl-ACP thioesterase (FAT) is a key enzyme controlling oil biosynthesis in plant seeds. FATs can be divided into two subfamilies, FATA and FATB according to their amino acid sequences and substrate specificity. The Upland cotton genome contains 20 GhFAT genes, amongst which 6 genes were of the GhFATA subfamily and 14 of the GhFATB subfamily. The 20 GhFAT genes are unevenly distributed on 14 chromosomes. The GhFATA genes have 5 or 7 exons and the GhFATB genes have 6 or 7 exons. All GhFAT proteins have the conserved Acyl-ACP_TE domain and PLN02370 super family, the typical characteristics of plant thioesterases. Analyses of the expression level of GhFATs and the compositions of fatty acid in 5–60 days-post-anthesis seeds showed that the ratio of saturated fatty acids to unsaturated fatty acids was consistent with the expression profile of GhFATB12, GhFATB3, and GhFATB10; the ratio of monounsaturated fatty acid to polyunsaturated fatty acids was consistent with the expression profile of GhFATA3. The oil contents of mature cottonseeds were positively correlated with the contents of palmitic acid and linolenic acid as well as seed vigor. These results provide essential information for further exploring the role(s) of the specific GhFATs in determining oil biosynthesis and cottonseed compositions.  相似文献   
939.
940.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号