首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   169篇
  免费   16篇
  185篇
  2022年   4篇
  2021年   3篇
  2018年   3篇
  2016年   7篇
  2015年   3篇
  2014年   6篇
  2013年   8篇
  2012年   7篇
  2011年   9篇
  2010年   8篇
  2009年   5篇
  2008年   6篇
  2007年   3篇
  2006年   3篇
  2005年   7篇
  2004年   4篇
  2003年   8篇
  2002年   4篇
  2001年   8篇
  2000年   5篇
  1999年   4篇
  1998年   2篇
  1997年   4篇
  1995年   3篇
  1991年   4篇
  1990年   3篇
  1987年   2篇
  1986年   4篇
  1983年   4篇
  1981年   5篇
  1979年   2篇
  1978年   3篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1967年   6篇
  1966年   1篇
  1964年   2篇
  1963年   1篇
  1961年   1篇
  1959年   1篇
  1957年   1篇
  1956年   2篇
  1952年   1篇
  1950年   1篇
  1943年   1篇
排序方式: 共有185条查询结果,搜索用时 15 毫秒
11.
12.
Currently, some controversy exists regarding the precise role of 15-lipoxygenase-1 (15-LOX-1) in colorectal carcinogenesis and other aspects of cancer biology. The aim of this study was to evaluate the effect of 15-LOX-1 on p21 (Cip/WAF 1) expression and growth regulation in human colon carcinoma cells. The effect of 13-S-hydroxyoctadecadienoic acid (HODE), a product of 15-LOX-1, on p21 (Cip/WAF 1) expression was evaluated in Caco-2 cells treated with sodium butyrate (NaBT) and/or nordihydroguaiarectic acid (NDGA), a LOX inhibitor. The effect of transfecting HCT-116 cells with 15-LOX-1 was also examined. NaBT-induced p21 (Cip/WAF 1) expression was enhanced by treatment with NDGA and 13-S-HODE reversed NaBT-induced p21 (Cip/WAF 1) expression in Caco-2 cells. Overexpression of 15-LOX-1 induced extracellular signal-related kinase (ERK) 1/2 phosphorylation, decreased p21 (Cip/WAF 1) expression, and increased HCT-116 cell growth. Treatment with NDGA decreased ERK 1/2 phosphorylation, and increased p21 (Cip/WAF 1) expression in 15-LOX-1 overexpressing HCT-116 cells. Our experimental results support the hypothesis that 15-LOX-1 may have "pro-neoplastic" effects during the development of colorectal cancer.  相似文献   
13.
A retrospective meta-modeling analysis was performed to integrate previously reported data of glucocorticoid (GC) effects on glucose regulation following a single intramuscular dose (50 mg/kg), single intravenous doses (10, 50 mg/kg), and intravenous infusions (0.1, 0.2, 0.3 and 0.4 mg/kg/h) of methylprednisolone (MPL) in normal and adrenalectomized (ADX) male Wistar rats. A mechanistic pharmacodynamic (PD) model was developed based on the receptor/gene/protein-mediated GC effects on glucose regulation. Three major target organs (liver, white adipose tissue and skeletal muscle) together with some selected intermediate controlling factors were designated as important regulators involved in the pathogenesis of GC-induced glucose dysregulation. Assessed were dynamic changes of food intake and systemic factors (plasma glucose, insulin, free fatty acids (FFA) and leptin) and tissue-specific biomarkers (cAMP, phosphoenolpyruvate carboxykinase (PEPCK) mRNA and enzyme activity, leptin mRNA, interleukin 6 receptor type 1 (IL6R1) mRNA and Insulin receptor substrate-1 (IRS-1) mRNA) after acute and chronic dosing with MPL along with the GC receptor (GR) dynamics in each target organ. Upon binding to GR in liver, MPL dosing caused increased glucose production by stimulating hepatic cAMP and PEPCK activity. In adipose tissue, the rise in leptin mRNA and plasma leptin caused reduction of food intake, the exogenous source of glucose input. Down-regulation of IRS-1 mRNA expression in skeletal muscle inhibited the stimulatory effect of insulin on glucose utilization further contributing to hyperglycemia. The nuclear drug-receptor complex served as the driving force for stimulation or inhibition of downstream target gene expression within different tissues. Incorporating information such as receptor dynamics, as well as the gene and protein induction, allowed us to describe the receptor-mediated effects of MPL on glucose regulation in each important tissue. This advanced mechanistic model provides unique insights into the contributions of major tissues and quantitative hypotheses for the multi-factor control of a complex metabolic system.  相似文献   
14.
Activation of the nuclear hormone peroxisome proliferator-activated receptor gamma (PPARgamma) inhibits cell growth and promotes differentiation in a broad spectrum of epithelial derived tumor cell lines. Here we utilized microarray technology to identify PPARgamma gene targets in intestinal epithelial cells. For each gene, the induction or repression was seen with two structurally distinct PPARgamma agonists, and the change in expression could be blocked by co-treatment with a specific PPARgamma antagonist. A majority of the genes could be regulated independently by a retinoid X receptor specific agonist. Genes implicated in lipid transport or storage (adipophilin and liver fatty acid-binding protein) were also activated by agonists of PPAR subtypes alpha and/or delta. In contrast, PPARgamma-selective targets included genes linked to growth regulatory pathways (regenerating gene IA), colon epithelial cell maturation (GOB-4 and keratin 20), and immune modulation (neutrophil-gelatinase-associated lipocalin). Additionally, three different genes of the carcinoembryonic antigen family were induced by PPARgamma. Cultured cells treated with PPARgamma ligands demonstrated an increase in Ca(2+)-independent, carcinoembryonic antigen-dependent homotypic aggregation, suggesting a potential role for PPARgamma in regulating intercellular adhesion. Collectively, these results will help define the mechanisms by which PPARgamma regulates intestinal epithelial cell biology.  相似文献   
15.
The cellular responses to activated Ras vary depending on cell type. Normal cells are often induced into pathways that lead to cell growth arrest, senescence, and/or apoptosis in response to activated Ras expression. These are important protective anti-tumorigenic responses that restrict the propagation of cells bearing activated oncogenes. Here we show that induction of Ha-Ras(Val-12) in Rat-1 fibroblasts resulted in G(1) growth arrest and apoptosis with loss of viable cells that is accompanied by a marked decrease in cyclin D1 levels via increased ubiquitin-proteasome-dependent cyclin D1 turnover. This is in contrast with a rat intestinal epithelial cell line in which induction of Ha-Ras(Val-12) results in transformation associated with sustained proliferation and increased levels of cyclin D1, that is not accompanied by anoikis or apoptosis. Expression of the cyclin D1 mutant (T286A) that contains an alanine for threonine 286 substitution and is resistant to ubiquitin-proteasome degradation in the Ha-Ras(Val-12) expressing Rat-1 cells resulted in a sustained transformed phenotype with no accumulation of cells in G(1). Inhibition of mitogen-activated protein kinase (MEK1/2) pathway partially reversed the Ras-mediated decrease in cyclin D1. Induction of Ha-Ras(Val-12) resulted in activation of Akt kinase and inactivation of glycogen-synthase-3beta kinase that are associated with reduction of cyclin D1 protein. These results suggest that Ras-mediated cyclin D1 degradation in Rat-1 cells appears to be partially dependent on activation of mitogen-activated protein kinase pathway and independent of glycogen-synthase-3beta kinase pathway.  相似文献   
16.
17.
The absorption of nitrous oxide(N2O) during unidirectional flowwas compared with the rate of uptake of nitric oxide (NO). At flowrates of 10, 20, and 60 ml/min from one nostril to the other, with thesoft palate closed, the N2Oreached a steady-state rate of absorption in 5-15 min. The meansuperficial capillary blood flow (n = 5) calculated from solubility and the steady-state rate ofN2O absorption ranged from 13.3 to15.9 ml/min. The relation between absorption ofN2O in the nose and capillaryblood flow fits a ventilation-perfusion model used by others todescribe uptake of inert, soluble gases in the rat nose. By contrast,the rate of uptake of NO gas, which is chemically reactive, is25-31 times as great as predicted by just its blood-to-airpartition coefficient. Exogenous NO (16.9 parts/million) did not induce nasal vasodilation as measured with laser Doppler andN2O absorption methods. Thedifference between the measured rate of uptake of NO and the rate ofuptake attributable to its partition coefficient in blood at the rateof blood flow calculated from N2Ouptake is probably due to chemical reaction of NO in mucous secretions, nasal tissues, and capillary blood.

  相似文献   
18.
19.
The 2-ketopropyl-coenzyme M oxidoreductase/carboxylase (2-KPCC) enzyme is the only member of the disulfide oxidoreductase (DSOR) family of enzymes, which are important for reductively cleaving S–S bonds, to have carboxylation activity. 2-KPCC catalyzes the conversion of 2-ketopropyl-coenzyme M to acetoacetate, which is used as a carbon source, in a controlled reaction to exclude protons. A conserved His–Glu motif present in DSORs is key in the protonation step; however, in 2-KPCC, the dyad is substituted by Phe–His. Here, we propose that this difference is important for coupling carboxylation with C–S bond cleavage. We substituted the Phe–His dyad in 2-KPCC to be more DSOR like, replacing the phenylalanine with histidine (F501H) and the histidine with glutamate (H506E), and solved crystal structures of F501H and the double variant F501H_H506E. We found that F501 protects the enolacetone intermediate from protons and that the F501H variant strongly promotes protonation. We also provided evidence for the involvement of the H506 residue in stabilizing the developing charge during the formation of acetoacetate, which acts as a product inhibitor in the WT but not the H506E variant enzymes. Finally, we determined that the F501H substitution promotes a DSOR-like charge transfer interaction with flavin adenine dinucleotide, eliminating the need for cysteine as an internal base. Taken together, these results indicate that the 2-KPCC dyad is responsible for selectively promoting carboxylation and inhibiting protonation in the formation of acetoacetate.  相似文献   
20.
Community engagement is increasingly becoming an integral part of research. "Community-engaged research" (CEnR) introduces new stakeholders as well as unique challenges to the protection of participants and the integrity of the research process. We--a group of representatives of CTSA-funded institutions and others who share expertise in research ethics and CEnR--have identified gaps in the literature regarding (1) ethical issues unique to CEnR; (2) the particular instructional needs of academic investigators, community research partners, and IRB members; and (3) best practices for teaching research ethics. This paper presents what we know, as well as what we still need to learn, in order to develop quality research ethics educational materials tailored to the full range of stakeholder groups in CEnR.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号