首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22293篇
  免费   2069篇
  国内免费   2971篇
  27333篇
  2024年   74篇
  2023年   372篇
  2022年   763篇
  2021年   1175篇
  2020年   800篇
  2019年   1083篇
  2018年   1008篇
  2017年   818篇
  2016年   1025篇
  2015年   1467篇
  2014年   1773篇
  2013年   1842篇
  2012年   2176篇
  2011年   1947篇
  2010年   1229篇
  2009年   1128篇
  2008年   1299篇
  2007年   1122篇
  2006年   952篇
  2005年   811篇
  2004年   674篇
  2003年   593篇
  2002年   524篇
  2001年   370篇
  2000年   315篇
  1999年   266篇
  1998年   191篇
  1997年   176篇
  1996年   156篇
  1995年   103篇
  1994年   100篇
  1993年   77篇
  1992年   111篇
  1991年   92篇
  1990年   100篇
  1989年   66篇
  1988年   58篇
  1987年   44篇
  1986年   53篇
  1985年   52篇
  1984年   50篇
  1983年   32篇
  1982年   27篇
  1981年   21篇
  1979年   24篇
  1978年   17篇
  1977年   14篇
  1976年   15篇
  1974年   14篇
  1973年   12篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
52.
Du WW  Yang BB  Shatseva TA  Yang BL  Deng Z  Shan SW  Lee DY  Seth A  Yee AJ 《PloS one》2010,5(11):e13828
Increased versican expression in breast tumors is predictive of relapse and has negative impact on survival rates. The C-terminal G3 domain of versican influences local and systemic tumor invasiveness in pre-clinical murine models. However, the mechanism(s) by which G3 influences breast tumor growth and metastasis is not well characterized. Here we evaluated the expression of versican in mouse mammary tumor cell lines observing that 4T1 cells expressed highest levels while 66c14 cells expressed low levels. We exogenously expressed a G3 construct in 66c14 cells and analyzed its effects on cell proliferation, migration, cell cycle progression, and EGFR signaling. Experiments in a syngeneic orthotopic animal model demonstrated that G3 promoted tumor growth and systemic metastasis in vivo. Activation of pERK correlated with high levels of G3 expression. In vitro, G3 enhanced breast cancer cell proliferation and migration by up-regulating EGFR signaling, and enhanced cell motility through chemotactic mechanisms to bone stromal cells, which was prevented by inhibitor AG 1478. G3 expressing cells demonstrated increased CDK2 and GSK-3β (S9P) expression, which were related to cell growth. The activity of G3 on mouse mammary tumor cell growth, migration and its effect on spontaneous metastasis to bone in an orthotopic model was modulated by up-regulating the EGFR-mediated signaling pathway. Taken together, EGFR-signaling appears to be an important pathway in versican G3-mediated breast cancer tumor invasiveness and metastasis.  相似文献   
53.
A PEG-based, folate mediated, active tumor targeting drug delivery system using DOX-hyd-PEG-FA nanoparticles (NPs) were prepared. DOX-hyd-PEG-FA NPs showed a significantly faster DOX release in pH 5.0 medium than in pH 7.4 medium. Compared with DOX-hyd-PEG NPs, DOX-hyd-PEG-FA NPs increased the intracellular accumulation of DOX and showed a DOX translocation from lysosomes to nucleus. The cytotoxicity of DOX-hyd-PEG-FA NPs on KB cells was much higher than that of free DOX, DOX-ami-PEG-FA NPs and DOX-hyd-PEG NPs. The cytotoxicity of DOX-hyd-PEG-FA NPs on KB cells was attenuated in the presence of exogenous folic acid. The IC50 of DOX-hyd-PEG-FA NPs and DOX-hyd-PEG NPs on A549 cells showed no significant difference. After DOX-hyd-PEG-FA NPs were intravenously administered, the amount of DOX distributed in tumor tissue was significantly increased, while the amount of DOX distributed in heart was greatly decreased as compared with free DOX. Compared with free DOX, NPs yielded improved survival rate, prolonged life span, delayed tumor growth and reduced the cardiotoxicity in tumor bearing mice model. These results indicated that the acid sensitivity, passive and active tumor targeting abilities were likely to act synergistically to enhance the drug delivery efficiency of DOX-hyd-PEG-FA NPs. Therefore, DOX-hyd-PEG-FA NPs are a promising drug delivery system for targeted cancer therapy.  相似文献   
54.
Soils are the largest terrestrial carbon store and soil respiration is the second-largest flux in ecosystem carbon cycling. Across China''s temperate region, climatic changes and human activities have frequently caused the transformation of grasslands to woodlands. However, the effect of this transition on soil respiration and soil organic carbon (SOC) dynamics remains uncertain in this area. In this study, we measured in situ soil respiration and SOC storage over a two-year period (Jan. 2007–Dec. 2008) from five characteristic vegetation types in a forest-steppe ecotone of temperate China, including grassland (GR), shrubland (SH), as well as in evergreen coniferous (EC), deciduous coniferous (DC) and deciduous broadleaved forest (DB), to evaluate the changes of soil respiration and SOC storage with grassland conversions to diverse types of woodlands. Annual soil respiration increased by 3%, 6%, 14%, and 22% after the conversion from GR to EC, SH, DC, and DB, respectively. The variation in soil respiration among different vegetation types could be well explained by SOC and soil total nitrogen content. Despite higher soil respiration in woodlands, SOC storage and residence time increased in the upper 20 cm of soil. Our results suggest that the differences in soil environmental conditions, especially soil substrate availability, influenced the level of annual soil respiration produced by different vegetation types. Moreover, shifts from grassland to woody plant dominance resulted in increased SOC storage. Given the widespread increase in woody plant abundance caused by climate change and large-scale afforestation programs, the soils are expected to accumulate and store increased amounts of organic carbon in temperate areas of China.  相似文献   
55.
The environmental saphrophyte Burkholderia pseudomallei is the causative agent of melioidosis, a systemic, potentially life-threatening condition endemic to many parts of south-east Asia and northern Australia. We have used the soil nematode Caenorhabditis elegans as a model host to characterize the mechanisms by which this bacterium mounts a successful infection. We find that C. elegans is susceptible to a broad range of Burkholderia species, and that the virulence mechanisms used by this pathogen to kill nematodes may be similar to those used to infect mammals. We also find that the specific dynamics of the C. elegans-B. pseudomallei host-pathogen interaction can be highly influenced by environmental factors, and that nematode killing results at least in part from the presence of a diffusible toxin. Finally, by screening for bacterial mutants attenuated in their ability to kill C. elegans, we genetically identify several new potential virulence factors in B. pseudomallei. The use of C. elegans as a model host should greatly facilitate future investigations into how B. pseudomallei can interact with host organisms.  相似文献   
56.
57.
对沙打旺的下胚轴、子叶、幼叶组织培养中脱分化细胞进行了超微结构观察,并着重讨论了细胞核的动态变化。脱分化细胞的细胞质中线粒体墙加,嵴明显;多聚核糖体增多;高尔基体增加;质体中积累淀粉。核仁与核内异染色质之间有一个动态过程。此过程暂称“核仁物质喷射“现象。在致有以下:1.核体出现,半嵌在增大的核仁上,核内异染色质沿核膜凝聚;2.异染色质移向核仁,并与核仁接触,核体消失,部分异质进入核仁;3.核仁物质  相似文献   
58.
To achieve long-term increases in soil organic carbon (SOC) storage, it is essential to understand the effects of carbon management strategies on SOC formation pathways, particularly through changes in microbial necromass carbon (MNC) and dissolved organic carbon (DOC). Using a 14-year field study, we demonstrate that both biochar and maize straw lifted the SOC ceiling, but through different pathways. Biochar, while raising SOC and DOC content, decreased substrate degradability by increasing carbon aromaticity. This resulted in suppressed microbial abundance and enzyme activity, which lowered soil respiration, weakened in vivo turnover and ex vivo modification for MNC production (i.e., low microbial carbon pump “efficacy”), and led to lower efficiency in decomposing MNC, ultimately resulting in the net accumulation of SOC and MNC. In contrast, straw incorporation increased the content and decreased the aromaticity of SOC and DOC. The enhanced SOC degradability and soil nutrient content, such as total nitrogen and total phosphorous, stimulated the microbial population and activity, thereby boosting soil respiration and enhancing microbial carbon pump “efficacy” for MNC production. The total C added to biochar and straw plots were estimated as 27.3–54.5 and 41.4 Mg C ha−1, respectively. Our results demonstrated that biochar was more efficient in lifting the SOC stock via exogenous stable carbon input and MNC stabilization, although the latter showed low “efficacy”. Meanwhile, straw incorporation significantly promoted net MNC accumulation but also stimulated SOC mineralization, resulting in a smaller increase in SOC content (by 50%) compared to biochar (by 53%–102%). The results address the decadal-scale effects of biochar and straw application on the formation of the stable organic carbon pool in soil, and understanding the causal mechanisms can allow field practices to maximize SOC content.  相似文献   
59.
Protein–protein interactions have been widely used to study gene expression pathways and may be considered as a new approach to drug discovery. Here I report the development of a universal protein array (UPA) system that provides a sensitive, quantitative, multi-purpose, effective and easy technology to determine not only specific protein–protein interactions, but also specific interactions of proteins with DNA, RNA, ligands and other small chemicals. (i) Since purified proteins are used, the results can be easily interpreted. (ii) UPA can be used multiple times for different targets, making it economically affordable for most laboratories, hospitals and biotechnology companies. (iii) Unlike DNA chips or DNA microarrays, no additional instrumentation is required. (iv) Since the UPA uses active proteins (without denaturation and renaturation), it is more sensitive compared with most existing methods. (v) Because the UPA can analyze hundreds (even thousands on a protein microarray) of proteins in a single experiment, it is a very effective method to screen proteins as drug targets in cancer and other human diseases.  相似文献   
60.
Streptococcus parasanguis is a primary colonizer of the tooth surface and plays a pivotal role in the formation of dental plaque. The fimbriae of S. parasanguis are important in mediating adhesion to saliva-coated hydroxylapatite (SHA), an in vitro tooth adhesion model. The Fap1 adhesin has been identified as the major fimbrial subunit, and recent studies suggest that Fap1 is a glycoprotein. Monosaccharide analysis of Fap1 purified from the culture supernatant of S. parasanguis indicated the presence of rhamnose, glucose, galactose, N-acetylglucosamine and N-acetylgalactosamine. A glycopeptide moiety was isolated from a pronase digest of Fap1 and purified by immunoaffinity chromatography. The monosaccharide composition of the purified glycopeptide was similar to that of the intact molecule. The functionality of the glycan moiety was determined using monoclonal antibodies (MAbs) specific for the intact Fap1 glycoprotein. These antibodies were grouped into two categories based on their ability to block adhesion of S. parasanguis to SHA and their corresponding specificity for either protein or glycan epitopes of the Fap1 protein. 'Non-blocking' MAb epitopes were mapped to unique protein sequences in the N-terminus of the Fap1 protein using non-glycosylated recombinant Fap1 proteins (rFap1 and drFap1) expressed in Escherichia coli. In contrast, the 'blocking' antibodies did not bind to the recombinant Fap1 proteins, and were effectively competed by the binding to the purified glycopeptide. These data suggest that the 'blocking' antibodies are specific for the glycan moiety and that the adhesion of S. parasanguis is mediated by sugar residues associated with Fap1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号