全文获取类型
收费全文 | 8849篇 |
免费 | 668篇 |
国内免费 | 659篇 |
专业分类
10176篇 |
出版年
2024年 | 19篇 |
2023年 | 114篇 |
2022年 | 282篇 |
2021年 | 492篇 |
2020年 | 293篇 |
2019年 | 371篇 |
2018年 | 377篇 |
2017年 | 301篇 |
2016年 | 367篇 |
2015年 | 566篇 |
2014年 | 685篇 |
2013年 | 705篇 |
2012年 | 829篇 |
2011年 | 723篇 |
2010年 | 433篇 |
2009年 | 403篇 |
2008年 | 462篇 |
2007年 | 377篇 |
2006年 | 292篇 |
2005年 | 249篇 |
2004年 | 192篇 |
2003年 | 185篇 |
2002年 | 160篇 |
2001年 | 143篇 |
2000年 | 129篇 |
1999年 | 106篇 |
1998年 | 72篇 |
1997年 | 83篇 |
1996年 | 81篇 |
1995年 | 58篇 |
1994年 | 47篇 |
1993年 | 45篇 |
1992年 | 63篇 |
1991年 | 49篇 |
1990年 | 49篇 |
1989年 | 33篇 |
1988年 | 39篇 |
1987年 | 26篇 |
1986年 | 23篇 |
1985年 | 36篇 |
1984年 | 33篇 |
1983年 | 14篇 |
1982年 | 15篇 |
1981年 | 8篇 |
1978年 | 11篇 |
1974年 | 11篇 |
1973年 | 7篇 |
1971年 | 9篇 |
1967年 | 7篇 |
1966年 | 9篇 |
排序方式: 共有10000条查询结果,搜索用时 28 毫秒
51.
52.
Nrf2可调节多种抗氧化酶的表达,Nrf2的缺失可能影响机体的运动能力,而低氧可提高机体的抗氧化能力并改善运动能力。为了考察低氧运动对Nrf2基因敲除大鼠运动能力和氧化应激的影响,本研究分别在常氧和低氧环境(12%氧浓度)中对野生型大鼠和Nrf2敲除大鼠进行4周的跑台运动。研究显示,低氧运动可提高野生型大鼠的跑台运动力竭时间,Nrf2敲除可缩短大鼠的力竭时间;低氧运动可上调大鼠的Nrf2 m RNA表达量;Nrf2敲除明显抑制HIF-1α蛋白表达,而低氧运动可上调野生型和Nrf2敲除大鼠的HIF-1α蛋白表达;Nrf2敲除大鼠的骨骼肌ROS水平明显升高,并且低氧均可降低野生型和Nrf2敲除大鼠骨骼肌ROS水平。低氧运动可上调Nrf2敲除大鼠的CAT和GSH-PX蛋白表达。苏木精和伊红(HE)染色显示,Nrf2敲除大鼠在力竭跑台运动完成后出现更严重的骨骼肌病理改变,而低氧运动可减轻骨骼肌损伤。本研究认为,Nrf2敲除导致了大鼠骨骼肌中抗氧化酶的抑制及ROS的过量累积,从而造成了骨骼肌损伤并降低了运动能力。此外,低氧可通过上调Nrf2的表达,进而激活HIF-1α及抗氧化酶活性,从而提高运动能力,并防止骨骼肌损伤。 相似文献
53.
Michael G. Brown Anthony A. Scalzo Laurie R. Stone Patricia Y. Clark Ying Du Ben Palanca Wayne M. Yokoyama 《Immunogenetics》2001,53(7):584-591
Allelic variability for mouse Chromosome 6 Nkc loci was assessed in 22 common laboratory strains of mice using selected natural killer gene complex (Nkc)-linked sequence tagged site markers. Most Nkc markers distinguished three or more alleles for a particular locus in the assessed mouse strains. Nkc locus alleles were highly conserved among genealogically related inbred strains, whereas far less similarity was observed among unrelated strains. Concurrent strain-to-strain comparisons for all Nkc-linked loci revealed common and uncommon Nkc haplotypes, including some that were likely recombinant. Nkc allele and haplotype assignments in inbred mouse strains and correlation with phenotypic traits should facilitate positional gene cloning strategies for unknown Nkc-linked trait modification loci. 相似文献
54.
中国人群中微卫星位点DXYS156的多态研究 总被引:1,自引:0,他引:1
以中国2个汉族群体和8个少数民族群体的S20名个体为研究,采用PCR扩增后案丙烯酰胺凝胶电泳分离的方法,分析了Y染色体上DXYS156Y和X染色体上XYS156X这两个微卫星位点的遗传多态性。结果表明,在所研究的10个中国人群中,共观察到10个不同长度片段的等位基因,在X染色体上的5个闰基因是:130bp、135bp、140bp、145bp、150bp,在Y染色体上的五个等位基因晃:160bp、1 相似文献
55.
Altered distribution of HMGB1 in the periodontal ligament of periostin-deficient mice subjected to Waldo’s orthodontic tooth movement 总被引:1,自引:0,他引:1
56.
Sonlee D. West Daniel Goldberg Anna Ziegler Michael Krencicki Terry W. Du Clos Carolyn Mold 《PloS one》2012,7(12)
Severe injury remains a leading cause of death and morbidity in patients under 40, with the number of annual trauma-related deaths approaching 160,000 in the United States. Patients who survive the initial trauma and post-traumatic resuscitation are at risk for immune dysregulation, which contributes to late mortality and accounts for approximately 20% of deaths after traumatic injury. This post-traumatic immunosuppressed state has been attributed to over-expression of anti-inflammatory mediators in an effort to restore host homeostasis. We measured a panel of monocyte markers and cytokines in 50 severely injured trauma patients for 3 days following admission. We made the novel observation that the subpopulation of monocytes expressing high levels of CD14 and CD16 was expanded in the majority of patients. These cells also expressed CD163 consistent with differentiation into alternatively activated macrophages with potential regulatory or wound-healing activity. We examined factors in trauma plasma that may contribute to the generation and activation of these cells. The percentage of CD14highCD16+ monocytes after trauma correlated strongly with plasma C-reactive protein (CRP) transforming growth factor-β (TGF-β), and macrophage colony-stimulating factor (M-CSF) levels. We demonstrate a role for TGF-β and M-CSF, but not CRP in generating these cells using monocytes from healthy volunteers incubated with plasma from trauma patients. CD16 is a receptor for CRP and IgG, and we showed that monocytes differentiated to the CD14highCD16+ phenotype produced anti-inflammatory cytokines in response to acute phase concentrations of CRP. The role of these cells in immunosuppression following trauma is an area of ongoing investigation. 相似文献
57.
Jing Gao Guoji Liu Hongping Li Li Xu Lili Du Bo Yang 《Bioprocess and biosystems engineering》2016,39(7):1115-1127
Anaerobic digestion (AD) is widely used in treating the sewage sludge, as it can reduce the amount of sludge, eliminate pathogens and produce biofuel. To enhance the operational performance and stability of anaerobic bioreactors, operational and conventional chemical data from full-scale sludge anaerobic digesters were collected over a 2-year period and summarized, and the microbial community diversity of the sludge sample was investigated at various stages of the AD process. For the purpose of distinguishing between the functional and community diversity of the microbes, Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) software was used to impute the prevalence of 16S rDNA marker gene sequences in the difference in various sludge samples. Meanwhile, a taxa analysis was also carried out to investigate the different sludge samples. The microbial community diversity analysis of one AD sludge sample showed that the most dominant bacterial genera were Saccharicrinis, Syntrophus, Anaerotruncus and Thermanaerothrix. Among archaea, acetoclastic Methanosaeta represented 56.0 %, and hydrogenotrophic Methanospirillum, Methanoculleus, Methanothermus and Methanolinea accounted for 41.3 % of all methanogens. The taxa, genetic and functional prediction analyses of the feedstock and AD sludge samples suggested great community diversity differences between them. The taxa of bacteria in two AD sludge samples were considerably different, but the abundances of the functional KEGG pathways took on similar levels. The numbers of identified pathogens were significantly lower in the digested sludge than in the feedstock, but the PICRUSt results showed the difference in “human diseases” abundances in the level-1 pathway between the two sludge samples was small. 相似文献
58.
Fu-Zheng Wei Ziyang Cao Xi Wang Hui Wang Mu-Yan Cai Tingting Li Naoko Hattori Donglai Wang Yipeng Du Boyan Song Lin-Lin Cao Changchun Shen Lina Wang Haiying Wang Yang Yang Dan Xie Fan Wang Toshikazu Ushijima Ying Zhao Wei-Guo Zhu 《Autophagy》2015,11(12):2309-2322
Macroautophagy is an evolutionarily conserved cellular process involved in the clearance of proteins and organelles. Although the autophagy regulation machinery has been widely studied, the key epigenetic control of autophagy process still remains unknown. Here we report that the methyltransferase EZH2 (enhancer of zeste 2 polycomb repressive complex 2 subunit) epigenetically represses several negative regulators of the MTOR (mechanistic target of rapamycin [serine/threonine kinase]) pathway, such as TSC2, RHOA, DEPTOR, FKBP11, RGS16 and GPI. EZH2 was recruited to these genes promoters via MTA2 (metastasis associated 1 family, member 2), a component of the nucleosome remodeling and histone deacetylase (NuRD) complex. MTA2 was identified as a new chromatin binding protein whose association with chromatin facilitated the subsequent recruitment of EZH2 to silenced targeted genes, especially TSC2. Downregulation of TSC2 (tuberous sclerosis 2) by EZH2 elicited MTOR activation, which in turn modulated subsequent MTOR pathway-related events, including inhibition of autophagy. In human colorectal carcinoma (CRC) tissues, the expression of MTA2 and EZH2 correlated negatively with expression of TSC2, which reveals a novel link among epigenetic regulation, the MTOR pathway, autophagy induction, and tumorigenesis. 相似文献
59.
Weidong Wang Yuhua Wang Yulin Du Zhen Zhao Xujun Zhu Xin Jiang Zaifa Shu Ying Yin Xinghui Li 《Plant cell reports》2014,33(11):1829-1841
Key message
Overexpression of CsHis in tobacco promoted chromatin condensation, but did not affect the phenotype. It also conferred tolerance to low-temperature, high-salinity, ABA, drought and oxidative stress in transgenic tobacco.Abstract
H1 histone, as a major structural protein of higher-order chromatin, is associated with stress responses in plants. Here, we describe the functions of the Camellia sinensis H1 Histone gene (CsHis) to illustrate its roles in plant responses to stresses. Subcellular localization and prokaryotic expression assays showed that the CsHis protein is localized in the nucleus, and its molecular size is approximately 22.5 kD. The expression levels of CsHis in C. sinensis leaves under various conditions were investigated by qRT-PCR, and the results indicated that CsHis was strongly induced by various abiotic stresses such as low-temperature, high-salinity, ABA, drought and oxidative stress. Overexpression of CsHis in tobacco (Nicotiana tabacum) promoted chromatin condensation, while there were almost no changes in the growth and development of transgenic tobacco plants. Phylogenetic analysis showed that CsHis belongs to the H1C and H1D variants of H1 histones, which are stress-induced variants and not the key variants required for growth and development. Stress tolerance analysis indicated that the transgenic tobacco plants exhibited higher tolerance than the WT plants upon exposure to various abiotic stresses; the transgenic plants displayed reduced wilting and senescence and exhibited greater net photosynthetic rate (Pn), stomatal conductance (Gs) and maximal photochemical efficiency (Fv/Fm) values. All the above results suggest that CsHis is a stress-induced gene and that its overexpression improves the tolerance to various abiotic stresses in the transgenic tobacco plants, possibly through the maintenance of photosynthetic efficiency. 相似文献60.