首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   12篇
  30篇
  2015年   1篇
  2014年   1篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2003年   1篇
  2000年   2篇
  1999年   2篇
  1996年   1篇
  1993年   1篇
  1992年   1篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1985年   1篇
  1984年   3篇
  1982年   2篇
  1981年   1篇
  1976年   1篇
排序方式: 共有30条查询结果,搜索用时 15 毫秒
21.
The response of the membrane potential to HCO3 supply has been studied in the cyanobacterium Anabaena variabilis strain M-3 under various conditions. Changes in potential were followed with the aid of the lipophilic cation tetraphenyl phosphonium bromide.  相似文献   
22.
Summary Spleen cells derived from BALB/c mice that had been repeatedly immunized with the methanol extraction residue (MER) fraction of tubercle bacilli exhibited a depressed capacity to act as responder cells in allogeneic and syngeneic mixed lymphocyte reactions (MLR). Previously reported studies revealed that such spleen cells are also defective in the in vitro generation of antibodies. In order to determine the nature of the cells responsible for the depressed MLR reactivity, purified populations of splenic macrophages, B lymphocytes, T lymphocytes originating from normal and from MER-immunized mice, and cell culture supernatants were added to MLR mixtures consisting of normal mouse splenocytes. Macrophages originating from MER-immunized mice and their culture supernatants exerted a significantly higher suppressive effect on MLR than that of corresponding preparation from normal mice. Splenic T cells originating from MER-immunized mice and their supernatants also significantly suppressed the MLR response. However, the same T cell populations that were inhibitory in MLR failed to suppress the in vitro generation of antibodies against sheep red blood cells in the presence of either MER or 2-mercaptoethanol. These and previously reported findings indicate that a nonspecific immunomodulating agent, MER, can, under certain conditions of treatment, elicit the induction of nonspecific suppressor T cells for MLR but not for antibody production, and, accordingly, can inhibit cellular and humoral immunological responsiveness by different mechanisms.  相似文献   
23.
M. Goldway  A. Sherman  D. Zenvirth  T. Arbel    G. Simchen 《Genetics》1993,133(2):159-169
A multicopy plasmid was isolated from a yeast genomic library, whose presence resulted in a twofold increase in meiotic nondisjunction of chromosome III. The plasmid contains a 7.5-kb insert from the middle of the right arm of chromosome III, including the gene THR4. Using chromosomal fragments derived from chromosome III, we determined that the cloned region caused a significant, specific, cis-acting increase in chromosome III nondisjunction in the first meiotic division. The plasmid containing this segment exhibited high spontaneous meiotic integration into chromosome III (in 2.4% of the normal meiotic divisions) and a sixfold increase (15.5%) in integration in nondisjunctant meioses. Genetic analysis of the cloned region revealed that it contains a ``hot spot' for meiotic recombination. In DNA of rad50S mutant cells, a strong meiosis-induced double strand break (DSB) signal was detected in this region. We discuss the possible relationships between meiosis-induced DSBs, recombination and chromosome disjunction, and propose that recombinational hot spots may be ``pairing sites' for homologous chromosomes in meiosis.  相似文献   
24.
Summary The effect of the thymic hormone, THF-2, on the immunocompetence of 5-fluorouracil (5-FU)-treated BALB/c mice, bearing MOPC-315 tumor, was examined. Treatment of noninoculated or tumor-bearing mice with THF-2 after 5-FU injection, resulted in an increase in the antibody response to sheep red blood cells and in the allogeneic response in spleen cell cultures and had no effect on the concanavalin-A-induced interleukin-2 secretion beyond that caused by 5-FU alone. Treatment with either 5-FU alone or 5-FU and THF-2 resulted in restoration to normal values of Lytl- and L3T4-positive populations in tumor-bearing mice. THF-2 prolonged the survival time of mice bearing MOPC-315 tumor beyond that observed in mice treated with 5-FU alone.  相似文献   
25.
Cystic fibrosis (CF) is associated with severe neutrophilic airway inflammation. We showed that moxifloxacin (MXF) inhibits IL-8 and MAPK activation in monocytic and respiratory epithelial cells. Azithromycin (AZM) and ciprofloxacin (CIP) are used clinically in CF. Thus we now examined effects of MXF, CIP, and AZM directly on CF cells. IB3, a CF bronchial cell line, and corrected C38 cells were treated with TNF-alpha, IL-1beta, or LPS with or without 5-50 microg/ml MXF, CIP, or AZM. IL-6 and IL-8 secretion (ELISA), MAPKs ERK1/2, JNK, p38, and p65 NF-kappaB (Western blot) activation were measured. Baseline IL-6 was sixfold higher in IB3 than C38 cells but IL-8 was similar. TNF-alpha and IL-1beta increased IL-6 and IL-8 12- to 67-fold with higher levels in IB3 than C38 cells post-TNF-alpha (P < 0.05). Levels were unchanged following LPS. Baseline phosphorylated form of ERK1/2 (p-ERK1/2), JNK, and NF-kappaB p65 were higher in IB3 than C38 cells (5-, 1.4-, and 1.4-fold), and following TNF-alpha increased, as did the p-p38, by 1.6- to 2-fold. MXF (5-50 microg/ml) and CIP (50 microg/ml), but not AZM, suppressed IL-6 and IL-8 secretion by up to 69%. MXF inhibited TNF-alpha-stimulated MAPKs ERK1/2, 46-kDa JNK, and NF-kappaB up to 60%, 40%, and 40%, respectively. In contrast, MXF did not inhibit p38 activation, implying a highly selective pretranslational effect. In conclusion, TNF-alpha and IL-1beta induce an exaggerated inflammatory response in CF airway cells, inhibited by MXF more than by CIP or AZM. Clinical trials are recommended to assess efficacy in CF and other chronic lung diseases.  相似文献   
26.
We present a scheme for locating double-strand breaks (DSBs) in meiotic chromosomes of Saccharomyces cerevisiae, based on the separation of large DNA molecules by pulsed field gel electrophoresis. Using a rad50S mutant, in which DSBs are not processed, we show that DSBs are widely induced in S. cerevisiae chromosomes during meiosis. Some of the DSBs accumulate at certain preferred sites. We present general profiles of DSBs in chromosomes III, V, VI and VII. A map of the 12 preferred sites on chromosome III is presented. At least some of these sites correlate with known 'hot spots' for meiotic recombination. The data are discussed in view of current models of meiotic recombination and chromosome segregation.  相似文献   
27.
The apparent affinity of photosynthesis for inorganic carbon in Anabaena variabilis strain M-3 increased during the course of adaptation from high to low CO2 concentration (5% and 0.03% v/v CO2 in air, respectively). This was attributed to an increased ability of the cells to accumulate inorganic carbon during the course of adaptation to low CO2 conditions. The release of phycobiliproteins was used to evaluate the sensitivity of the cells to lysozyme treatment followed by osmotic shock. High CO2-grown cells were more sensitive to this treatment than were low CO2 ones. The efflux of inorganic carbon from cells preloaded with radioactive bicarbonate is faster in high than it is in low CO2-adapted cells. It is postulated that the cell wall or membrane components undergo changes during the course of adaptation to low CO2 conditions. This is supported by electron micrographs showing differences in the cell wall appearance between high and low CO2-grown cells. The increasing ability to accumulate HCO3 and the lessened sensitivity to lysozyme during adaptation to low CO2 conditions depends on protein synthesis. The increase in affinity for inorganic carbon during the adaptation to low CO2 conditions is severely inhibited by the presence of spectinomycin. Incubation in the light significantly lessens the time required for the adaptation to low CO2 conditions.  相似文献   
28.
Yeast artificial chromosomes (YACs) that contain human DNA backbone undergo DNA double-strand breaks (DSBs) and recombination during yeast meiosis at rates similar to the yeast native chromosomes. Surprisingly, YACs containing DNA covering a recombination hot spot in the mouse major histocompatibility complex class III region do not show meiotic DSBs and undergo meiotic recombination at reduced levels. Moreover, segregation of these YACs during meiosis is seriously compromised. In meiotic yeast cells carrying the mutations sir2 or sir4, but not sir3, these YACs show DSBs, suggesting that a unique chromatin structure of the YACs, involving Sir2 and Sir4, protects the YACs from the meiotic recombination machinery. We speculate that the paucity of DSBs and recombination events on these YACs during yeast meiosis may reflect the refractory nature of the corresponding region in the mouse genome.  相似文献   
29.

Background  

Meiosis in budding yeast is coupled to the process of sporulation, where the four haploid nuclei are packaged into a gamete. This differentiation process is characterized by a point of transition, termed commitment, when it becomes independent of the environment. Not much is known about the mechanisms underlying commitment, but it is often assumed that positive feedback loops stabilize the underlying gene-expression cascade.  相似文献   
30.
The intracellular pH and membrane potential were determined in the acidophilic algae Cyanidoschyzon merolae as a function of extracellular pH. The alga appear to be capable of maintaining the intracellular pH at the range of 6.35 to 7.1 over the extracellular pH range of 1.5 to 7.5. The membrane potential increase from −12 millivolts (negative inside) to −71 millivolts and thus ΔH+ decreased from −300 to −47 millivolts over the same range of extracellular pH. It is suggested that the ΔH+ may set the upper and lower limits of pH for growth. Photosynthetic performance was also determined as a function of pH. The cells appeared to utilize CO2 from the medium as the apparent Km(co2) was 2 to 3 micromolar CO2 over the pH range of 1.5 to 7.5 C. merolae appear to possess a `CO2 concentrating' mechanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号