首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   405篇
  免费   50篇
  2022年   7篇
  2021年   10篇
  2020年   7篇
  2019年   8篇
  2018年   12篇
  2017年   9篇
  2016年   11篇
  2015年   23篇
  2014年   17篇
  2013年   25篇
  2012年   37篇
  2011年   38篇
  2010年   29篇
  2009年   21篇
  2008年   30篇
  2007年   20篇
  2006年   22篇
  2005年   25篇
  2004年   24篇
  2003年   26篇
  2002年   11篇
  2001年   6篇
  2000年   8篇
  1999年   6篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1983年   1篇
  1982年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有455条查询结果,搜索用时 15 毫秒
51.
The history of the Jewish Diaspora dates back to the Assyrian and Babylonian conquests in the Levant, followed by complex demographic and migratory trajectories over the ensuing millennia which pose a serious challenge to unraveling population genetic patterns. Here we ask whether phylogenetic analysis, based on highly resolved mitochondrial DNA (mtDNA) phylogenies can discern among maternal ancestries of the Diaspora. Accordingly, 1,142 samples from 14 different non-Ashkenazi Jewish communities were analyzed. A list of complete mtDNA sequences was established for all variants present at high frequency in the communities studied, along with high-resolution genotyping of all samples. Unlike the previously reported pattern observed among Ashkenazi Jews, the numerically major portion of the non-Ashkenazi Jews, currently estimated at 5 million people and comprised of the Moroccan, Iraqi, Iranian and Iberian Exile Jewish communities showed no evidence for a narrow founder effect, which did however characterize the smaller and more remote Belmonte, Indian and the two Caucasus communities. The Indian and Ethiopian Jewish sample sets suggested local female introgression, while mtDNAs in all other communities studied belong to a well-characterized West Eurasian pool of maternal lineages. Absence of sub-Saharan African mtDNA lineages among the North African Jewish communities suggests negligible or low level of admixture with females of the host populations among whom the African haplogroup (Hg) L0-L3 sub-clades variants are common. In contrast, the North African and Iberian Exile Jewish communities show influence of putative Iberian admixture as documented by mtDNA Hg HV0 variants. These findings highlight striking differences in the demographic history of the widespread Jewish Diaspora.  相似文献   
52.
Liu P  Zhang S  Yao Q  Liu X  Wang X  Huang C  Huang X  Wang P  Yuan M  Liu JY  Wang QK  Liu M 《Human genetics》2008,124(5):507-513
Disseminated superficial actinic porokeratosis (DSAP) is a chronic autosomal dominant cutaneous disorder with high genetic heterogeneity. Two genetic loci for DSAP were identified, but no specific genes were reported to date. The pathogenic mechanism of this disorder remains to be elucidated. In this study, a large, five-generation Chinese family with DSAP was genetically characterized. Two known DSAP loci, DSAP1 and DSAP2, two DSAP candidate genes (SART3 and SSH1), one DSP-linked locus and one PPPD-linked locus were first excluded in the family. The family was then characterized by genome-wide linkage analysis and a new DSAP locus was identified on chromosome 1p31.3–p31.1 with a maximum two-point LOD score of 5.09 with marker D1S2897 (θ = 0). Fine mapping showed that the disease gene was located within an 8.2 cM or 11.9 Mb region between markers D1S438 and D1S464. This is the third locus identified for DSAP (DSAP3). Eight candidate genes including GNG12, IL12RB2, ITGB3BP, DNAJ6, PIN1L, GADD45A, RPE65 and NEGR1 were sequenced, but found to be negative for functional sequence variants. Further mutational analysis of the candidate genes in the region will identify the specific gene for DSAP, which will provide insights into the pathogenesis of DSAP.  相似文献   
53.
MamA is a highly conserved protein found in magnetotactic bacteria (MTB), a diverse group of prokaryotes capable of navigating according to magnetic fields – an ability known as magnetotaxis. Questions surround the acquisition of this magnetic navigation ability; namely, whether it arose through horizontal or vertical gene transfer. Though its exact function is unknown, MamA surrounds the magnetosome, the magnetic organelle embedding a biomineralised nanoparticle and responsible for magnetotaxis. Several structures for MamA from a variety of species have been determined and show a high degree of structural similarity. By determining the structure of MamA from Desulfovibrio magneticus RS-1 using X-ray crystallography, we have opened up the structure-sequence landscape. As such, this allows us to perform structural- and phylogenetic-based analyses using a variety of previously determined MamA from a diverse range of MTB species across various phylogenetic groups. We found that MamA has remained remarkably constant throughout evolution with minimal change between different taxa despite sequence variations. These findings, coupled with the generation of phylogenetic trees using both amino acid sequences and 16S rRNA, indicate that magnetotaxis likely did not spread via horizontal gene transfer and instead has a significantly earlier, primordial origin.  相似文献   
54.
55.
The phycobilisomes (PBSs) of cyanobacteria and red-algae are unique megadaltons light-harvesting protein-pigment complexes that utilize bilin derivatives for light absorption and energy transfer. Recently, the high-resolution molecular structures of red-algal PBSs revealed how the multi-domain core-membrane linker (LCM) specifically organizes the allophycocyanin subunits in the PBS’s core. But, the topology of LCM in these structures was different than that suggested for cyanobacterial PBSs based on lower-resolution structures. Particularly, the model for cyanobacteria assumed that the Arm2 domain of LCM connects the two basal allophycocyanin cylinders, whereas the red-algal PBS structures revealed that Arm2 is partly buried in the core of one basal cylinder and connects it to the top cylinder. Here, we show by biochemical analysis of mutations in the apcE gene that encodes LCM, that the cyanobacterial and red-algal LCM topologies are actually the same. We found that removing the top cylinder linker domain in LCM splits the PBS core longitudinally into two separate basal cylinders. Deleting either all or part of the helix-loop-helix domain at the N-terminal end of Arm2, disassembled the basal cylinders and resulted in degradation of the part containing the terminal emitter, ApcD. Deleting the following 30 amino-acids loop severely affected the assembly of the basal cylinders, but further deletion of the amino-acids at the C-terminal half of Arm2 had only minor effects on this assembly. Altogether, the biochemical data are consistent with the red-algal LCM topology, suggesting that the PBS cores in cyanobacteria and red-algae assemble in the same way.  相似文献   
56.
Genomes undergo changes in organization as a result of gene duplications, chromosomal rearrangements and local mutations, among other mechanisms. In contrast to prokaryotes, in which genes of a common function are often organized in operons and reside contiguously along the genome, most eukaryotes show much weaker clustering of genes by function, except for few concrete functional groups. We set out to check systematically if there is a relation between gene function and gene organization in the human genome. We test this question for three types of functional groups: pairs of interacting proteins, complexes and pathways. We find a significant concentration of functional groups both in terms of their distance within the same chromosome and in terms of their dispersal over several chromosomes. Moreover, using Hi-C contact map of the tendency of chromosomal segments to appear close in the 3D space of the nucleus, we show that members of the same functional group that reside on distinct chromosomes tend to co-localize in space. The result holds for all three types of functional groups that we tested. Hence, the human genome shows substantial concentration of functional groups within chromosomes and across chromosomes in space.  相似文献   
57.
Biological systems are traditionally studied by focusing on a specific subsystem, building an intuitive model for it, and refining the model using results from carefully designed experiments. Modern experimental techniques provide massive data on the global behavior of biological systems, and systematically using these large datasets for refining existing knowledge is a major challenge. Here we introduce an extended computational framework that combines formalization of existing qualitative models, probabilistic modeling, and integration of high-throughput experimental data. Using our methods, it is possible to interpret genomewide measurements in the context of prior knowledge on the system, to assign statistical meaning to the accuracy of such knowledge, and to learn refined models with improved fit to the experiments. Our model is represented as a probabilistic factor graph, and the framework accommodates partial measurements of diverse biological elements. We study the performance of several probabilistic inference algorithms and show that hidden model variables can be reliably inferred even in the presence of feedback loops and complex logic. We show how to refine prior knowledge on combinatorial regulatory relations using hypothesis testing and derive p-values for learned model features. We test our methodology and algorithms on a simulated model and on two real yeast models. In particular, we use our method to explore uncharacterized relations among regulators in the yeast response to hyper-osmotic shock and in the yeast lysine biosynthesis system. Our integrative approach to the analysis of biological regulation is demonstrated to synergistically combine qualitative and quantitative evidence into concrete biological predictions.  相似文献   
58.
Protein binding to DNA is a fundamental process in gene regulation. Methodologies such as ChIP-Seq and mapping of DNase I hypersensitive sites provide global information on this regulation in vivo. In vitro methodologies provide valuable complementary information on protein–DNA specificities. However, current methods still do not measure absolute binding affinities. There is a real need for large-scale quantitative protein–DNA affinity measurements. We developed QPID, a microfluidic application for measuring protein–DNA affinities. A single run is equivalent to 4096 gel-shift experiments. Using QPID, we characterized the different affinities of ATF1, c-Jun, c-Fos and AP-1 to the CRE consensus motif and CRE half-site in two different genomic sequences on a single device. We discovered that binding of ATF1, but not of AP-1, to the CRE half-site is highly affected by its genomic context. This effect was highly correlated with ATF1 ChIP-seq and PBM experiments. Next, we characterized the affinities of ATF1 and ATF3 to 128 genomic CRE and CRE half-site sequences. Our affinity measurements explained that in vivo binding differences between ATF1 and ATF3 to CRE and CRE half-sites are partially mediated by differences in the minor groove width. We believe that QPID would become a central tool for quantitative characterization of biophysical aspects affecting protein–DNA binding.  相似文献   
59.

Background

Cancer is an evolutionary process characterized by the accumulation of somatic mutations in a population of cells that form a tumor. One frequent type of mutations is copy number aberrations, which alter the number of copies of genomic regions. The number of copies of each position along a chromosome constitutes the chromosome’s copy-number profile. Understanding how such profiles evolve in cancer can assist in both diagnosis and prognosis.

Results

We model the evolution of a tumor by segmental deletions and amplifications, and gauge distance from profile \(\mathbf {a}\) to \(\mathbf {b}\) by the minimum number of events needed to transform \(\mathbf {a}\) into \(\mathbf {b}\). Given two profiles, our first problem aims to find a parental profile that minimizes the sum of distances to its children. Given k profiles, the second, more general problem, seeks a phylogenetic tree, whose k leaves are labeled by the k given profiles and whose internal vertices are labeled by ancestral profiles such that the sum of edge distances is minimum.

Conclusions

For the former problem we give a pseudo-polynomial dynamic programming algorithm that is linear in the profile length, and an integer linear program formulation. For the latter problem we show it is NP-hard and give an integer linear program formulation that scales to practical problem instance sizes. We assess the efficiency and quality of our algorithms on simulated instances.
  相似文献   
60.
Sensory processing is associated with gamma frequency oscillations (30–80 Hz) in sensory cortices. This raises the question whether gamma oscillations can be directly involved in the representation of time-varying stimuli, including stimuli whose time scale is longer than a gamma cycle. We are interested in the ability of the system to reliably distinguish different stimuli while being robust to stimulus variations such as uniform time-warp. We address this issue with a dynamical model of spiking neurons and study the response to an asymmetric sawtooth input current over a range of shape parameters. These parameters describe how fast the input current rises and falls in time. Our network consists of inhibitory and excitatory populations that are sufficient for generating oscillations in the gamma range. The oscillations period is about one-third of the stimulus duration. Embedded in this network is a subpopulation of excitatory cells that respond to the sawtooth stimulus and a subpopulation of cells that respond to an onset cue. The intrinsic gamma oscillations generate a temporally sparse code for the external stimuli. In this code, an excitatory cell may fire a single spike during a gamma cycle, depending on its tuning properties and on the temporal structure of the specific input; the identity of the stimulus is coded by the list of excitatory cells that fire during each cycle. We quantify the properties of this representation in a series of simulations and show that the sparseness of the code makes it robust to uniform warping of the time scale. We find that resetting of the oscillation phase at stimulus onset is important for a reliable representation of the stimulus and that there is a tradeoff between the resolution of the neural representation of the stimulus and robustness to time-warp.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号