首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   290篇
  免费   42篇
  332篇
  2022年   4篇
  2021年   8篇
  2020年   5篇
  2019年   8篇
  2018年   9篇
  2017年   7篇
  2016年   7篇
  2015年   20篇
  2014年   10篇
  2013年   19篇
  2012年   26篇
  2011年   31篇
  2010年   18篇
  2009年   16篇
  2008年   22篇
  2007年   15篇
  2006年   19篇
  2005年   15篇
  2004年   16篇
  2003年   17篇
  2002年   7篇
  2001年   3篇
  2000年   4篇
  1999年   3篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1973年   1篇
排序方式: 共有332条查询结果,搜索用时 15 毫秒
111.
We used a combined approach of homozygosity mapping and whole exome sequencing (WES) to search for the genetic cause of autosomal recessive retinitis pigmentosa (arRP) in families of Yemenite Jewish origin. Homozygosity mapping of two arRP Yemenite Jewish families revealed a few homozygous regions. A subsequent WES analysis of the two index cases revealed a shared homozygous novel nucleotide deletion (c.1220delG) leading to a frameshift (p.Gly407Glufs*56) in an alternative exon (#15) of USH1C. Screening of additional Yemenite Jewish patients revealed a total of 16 homozygous RP patients (with a carrier frequency of 0.008 in controls). Funduscopic and electroretinography findings were within the spectrum of typical RP. While other USH1C mutations usually cause Usher type I (including RP, vestibular dysfunction and congenital deafness), audiometric screening of 10 patients who are homozygous for c.1220delG revealed that patients under 40 years of age had normal hearing while older patients showed mild to severe high tone sensorineural hearing loss. This is the first report of a mutation in a known USH1 gene that causes late onset rather than congenital sensorineural hearing loss. The c.1220delG mutation of USH1C accounts for 23% of RP among Yemenite Jewish patients in our cohort.  相似文献   
112.
Here, we compare two approaches of protein design. A computational approach was used in the design of the coiled-coil iron-sulfur protein, CCIS, as a four helix bundle binding an iron-sulfur cluster within its hydrophobic core. An empirical approach was used for designing the redox-chain maquette, RCM as a four-helix bundle assembling iron-sulfur clusters within loops and one heme in the middle of its hydrophobic core. We demonstrate that both ways of design yielded the desired proteins in terms of secondary structure and cofactors assembly. Both approaches, however, still have much to improve in predicting conformational changes in the presence of bound cofactors, controlling oligomerization tendency and stabilizing the bound iron-sulfur clusters in the reduced state. Lessons from both ways of design and future directions of development are discussed. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.  相似文献   
113.
Recent studies have identified extracellular matrix (ECM) compliance as an influential factor in determining the fate of anchorage-dependent cells. We explore a method of examining the influence of ECM compliance on cell morphology and remodeling in three-dimensional culture. For this purpose, a biological ECM analog material was developed to pseudo-independently alter its biochemical and physical properties. A set of 18 material variants were prepared with shear modulus ranging from 10 to 700 Pa. Smooth muscle cells were encapsulated in these materials and time-lapse video microscopy was used to show a relationship between matrix modulus, proteolytic biodegradation, cell spreading, and cell compaction of the matrix. The proteolytic susceptibility of the matrix, the degree of matrix compaction, and the cell morphology were quantified for each of the material variants to correlate with the modulus data. The initial cell spreading into the hydrogel matrix was dependent on the proteolytic susceptibility of the materials, whereas the extent of cell compaction proved to be more correlated to the modulus of the material. Inhibition of matrix metalloproteinases profoundly affected initial cell spreading and remodeling even in the most compliant materials. We concluded that smooth muscle cells use proteolysis to form lamellipodia and tractional forces to contract and remodel their surrounding microenvironment. Matrix modulus can therefore be used to control the extent of cellular remodeling and compaction. This study further shows that the interconnection between matrix modulus and proteolytic resistance in the ECM may be partly uncoupled to provide insight into how cells interpret their physical three-dimensional microenvironment.  相似文献   
114.
115.
116.
Compost amendments to soils and potting mixes are routinely applied to improve soil fertility and plant growth and health. These amendments, which contain high levels of organic matter and microbial cells, can influence microbial communities associated with plants grown in such soils. The purpose of this study was to follow the bacterial community compositions of seed and subsequent root surfaces in the presence and absence of compost in the potting mix. The bacterial community compositions of potting mixes, seed, and root surfaces sampled at three stages of plant growth were analyzed via general and newly developed Bacteroidetes-specific, PCR-denaturing gradient gel electrophoresis methodologies. These analyses revealed that seed surfaces were colonized primarily by populations detected in the initial potting mixes, many of which were not detected in subsequent root analyses. The most persistent bacterial populations detected in this study belonged to the genus Chryseobacterium (Bacteroidetes) and the family Oxalobacteraceae (Betaproteobacteria). The patterns of colonization by populations within these taxa differed significantly and may reflect differences in the physiology of these organisms. Overall, analyses of bacterial community composition revealed a surprising prevalence and diversity of Bacteroidetes in all treatments.  相似文献   
117.
A protocol is described for the reconstitution of a transmembrane β-barrel protein domain, tOmpA, into lipid bicelles. tOmpA is the largest protein to be reconstituted in bicelles to date. Its insertion does not prevent bicelles from orienting with their plane either parallel or perpendicular to the magnetic field, depending on the absence or presence of paramagnetic ions. In the latter case, tOmpA is shown to align with the axis of the β-barrel parallel to the magnetic field, i.e. perpendicular to the plane of the bilayer, an orientation conforming to that in natural membranes and favourable to structural studies by solid-state NMR. Reconstitution into bicelles may offer an interesting approach for structural studies of membrane proteins in a medium resembling a biological membrane, using either NMR or other biophysical techniques. Our data suggest that alignment in the magnetic field of membrane proteins included into bicelles may be facilitated if the protein is folded as a β-barrel structure.  相似文献   
118.
Omapatrilat inhibits both angiotensin-converting enzyme (ACE) and neutral endopeptidase (NEP). ACE inhibitors have been shown to inhibit atherosclerosis in apoE-deficient mice and in several other animal models but failed in low-density lipoprotein (LDL) receptor– deficient mice despite effective inhibition of the reninangiotensin- aldosterone system. The aim of the present study was to examine the effect of omapatrilat on atherogenesis in diabetic and nondiabetic LDL receptor–deficient mice. LDL receptor–deficient male mice were randomly divided into 4 groups (n = 11 each). Diabetes was induced in 2 groups by low-dose STZ, the other 2 groups served as nondiabetic controls. Omapatrilat (70 mg/kg/day) was administered to one of the diabetic and to one of the nondiabetic groups. The diabetic and the nondiabetic mice were sacrificed after 3 and 5 weeks, respectively. The aortae were examined and the atherosclerotic plaque area was measured. The atherosclerotic plaque area was significantly smaller in the omapatrilat-treated mice, both diabetic and nondiabetic, as compared to nontreated controls. The mean plaque area of omapatrilattreated nondiabetic mice was 9357 ± 7293 μm2, versus 71977 ± 34610 μm2 in the nontreated mice (P = .002). In the diabetic animals, the plaque area was 8887 ± 5386 μm2 and 23220 ± 10400 μm2, respectively for treated and nontreated mice (P = .001). Plasma lipids were increased by omapatrilat: Meanplasma cholesterol in treated mice, diabetic and nondiabetic combined, was 39.31 ± 6.00 mmol/L, versus 33.12 ± 7.64 mmol/L in the nontreated animals (P = .008). The corresponding combined mean values of triglycerides were 4.83 ± 1.93 versus 3.00 ± 1.26 mmol/L (P = .02). Omapatrilat treatment did not affect weight or plasma glucose levels. Treatment with omapatrilat inhibits atherogenesis in diabetic as well as nondiabetic LDL receptor–deficient mice despite an increase in plasma lipids, suggesting a direct effect on the arterial wall.  相似文献   
119.

Background

In the current era of strong worldwide market couplings the global financial village became highly prone to systemic collapses, events that can rapidly sweep throughout the entire village.

Methodology/Principal Findings

We present a new methodology to assess and quantify inter-market relations. The approach is based on the correlations between the market index, the index volatility, the market Index Cohesive Force and the meta-correlations (correlations between the intra-correlations.) We investigated the relations between six important world markets—U.S., U.K., Germany, Japan, China and India—from January 2000 until December 2010. We found that while the developed “western” markets (U.S., U.K., Germany) are highly correlated, the interdependencies between these markets and the developing “eastern” markets (India and China) are volatile and with noticeable maxima at times of global world events. The Japanese market switches “identity”—it switches between periods of high meta-correlations with the “western” markets and periods when it behaves more similarly to the “eastern” markets.

Conclusions/Significance

The methodological framework presented here provides a way to quantify the evolvement of interdependencies in the global market, evaluate a world financial network and quantify changes in the world inter market relations. Such changes can be used as precursors to the agitation of the global financial village. Hence, the new approach can help to develop a sensitive “financial seismograph” to detect early signs of global financial crises so they can be treated before they develop into worldwide events.  相似文献   
120.
Dror Tobi 《Proteins》2013,81(11):1910-1918
Protein enzymes enable the cell to execute chemical reactions in short time by accelerating the rate of the reactions in a selective manner. The motions or dynamics of the enzymes are essential for their function. Comparison of the dynamics of a set of 1247 nonhomologous enzymes was performed. For each enzyme, the slowest modes of motion are calculated using the Gaussian network model (GNM) and they are globally aligned. Alignment is done using the dynamic programming algorithm of Needleman and Wunsch, commonly used for sequence alignment. Only 96 pairs of proteins were identified to have three similar GNM slow modes with 63 of them having a similar structure. The most frequent slowest mode of motion describes a two domains anticorrelated motion that characterizes at least 23% of the enzymes. Therefore, dynamics uniqueness cannot be accounted for by the slowest mode itself but rather by the combination of several slow modes. Different quaternary structure packing can restrain the motion of enzyme subunits differently and may serve as another mechanism that increases the dynamics uniqueness. Proteins 2013; 81:1910–1918. © 2013 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号