首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   325篇
  免费   34篇
  359篇
  2022年   5篇
  2021年   12篇
  2020年   5篇
  2019年   9篇
  2018年   12篇
  2017年   8篇
  2016年   7篇
  2015年   22篇
  2014年   14篇
  2013年   20篇
  2012年   27篇
  2011年   31篇
  2010年   18篇
  2009年   16篇
  2008年   22篇
  2007年   14篇
  2006年   20篇
  2005年   16篇
  2004年   18篇
  2003年   18篇
  2002年   7篇
  2001年   3篇
  2000年   4篇
  1999年   3篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1979年   1篇
  1975年   1篇
  1973年   2篇
  1972年   2篇
排序方式: 共有359条查询结果,搜索用时 31 毫秒
101.
Bioaugmentation can alter the potential activity as well as the composition of the naturally occurring microbial biota during bioremediation of a contaminated site. The focus of the current study is the pollutant 17β-estradiol (E2), which can cause endocrine effects and is potentially harmful to aquatic biota and to public health. The community composition and function of biofilms, originating from a wetland system, as affected by augmentation of an estradiol-degrading bacterium (EDB-LI1) under different conditions, were investigated. EDB-LI1 inoculation into biofilm from two wetland ponds representing early and advanced water treatment stages, respectively, yielded three significant observations, as follows: (i) EDB-LI1, enriched from a biofilm of a constructed wetland wastewater treatment system, was detected (by quantitative PCR [qPCR] analysis) in this environment in the augmented biofilm only; (ii) the augmented biofilm acquired the ability to remove estradiol; and (iii) the bacterial community composition (analyzed by PCR-denaturing gradient gel electrophoresis [DGGE]) of the augmented biofilm differed from that of the control biofilm. Furthermore, EDB-LI1 bioaugmentation showed a higher level of removal of estradiol with biofilms that originated from the advanced-treatment-stage wetland pond than those from the early-treatment-stage pond. Hence, the bioaugmentation efficiency of EDB-LI1 depends on both the quality of the feed water and the microbial community composition in the pond.  相似文献   
102.
The prelytic events associated with the interaction of saponins with Physarum polycephalum membrane components were studied. It was found that alfalfa saponins form interaction products with membranal sterols, proteins and phospholipids. The interaction of saponins with proteins affect also certain membranal enzymic activities such as NADH oxidase and Malate dehydrogenase. It is suggested that although the interaction of the saponin with sterols is much more specific than with other membranal components, the lysis of plasmodia of P. polycephalum should be attributed to a concerted attack on the various membrane constituents. In continuation of these interactions, the changes of permeability of plasmodia membrane were expressed by increment of inorganic sodium ions and water influx, traced by lysis, while no efflux of ions was observed.Killed in action in the October War, October 22, 1973.  相似文献   
103.
104.
Numerous cultural aspects, mainly based on historical records, suggest a common origin of the Middle-Eastern Arab Muslim and Jewish populations. This is supported, to some extent, by Y-chromosome haplogroup analysis of Middle-Eastern and European samples. Up to date, no genomic regions that are shared among Arab Muslim and Jewish chromosomes and are unique to these populations have been reported. Here, we report of a rare achromatopsia-causing CNGA3 mutation (c.1585G>A) presents in both Arab Muslim and Oriental Jewish patients. A haplotype analysis of c.1585G>A-bearing chromosomes from Middle Eastern and European origins revealed a shared Muslim–Jewish haplotype, which is different from those detected in European patients, indicating a recurrent mutation stratified by a Jewish–Muslim founder effect. Comprehensive whole-genome haplotype analysis using 250 K single nucleotide polymorphism arrays revealed a large homozygous region of ~11 Mbp shared by both Arab Muslim and Oriental Jewish chromosomes. A subsequent microsatellite analysis of a 21.5 cM interval including CNGA3 and the adjacent chromosome 2 centromere revealed a unique and extremely rare haplotype associated with the c.1585G>A mutation. The age of the shared c.1585G>A mutation was calculated using the microsatellite genotyping data to be about 200 generations ago. A similar analysis of mutation age based on the Arab Muslim data alone showed that the mutation was unlikely to be the product of a recent gene flow event. The data present here demonstrate a large (11 Mbp) genomic region that is likely to originate from an ancient common ancestor of Middle-Eastern Arab Muslims and Jews who lived approximately 5,000 years ago.  相似文献   
105.
106.
Gill bacterial communities of Chama pacifica, an Indo-Pacific invasive oyster to the eastern Mediterranean Sea, were compared with those of Chama savignyi, its northern Red Sea congeneric species. Summer and winter bacterial populations were characterized and compared using 16S rDNA clone libraries, and seasonal population dynamics were monitored by automated ribosomal intergenic spacer analysis (ARISA). Clone libraries revealed a specific clade of bacteria, closely related to marine endosymbionts from the Indo-Pacific, found in both ecosystems, of which one taxon was conserved in oysters from both sites. This taxon was dominant in summer libraries and was weakly present in winter ones, where other members of this group were dominant. ARISA results revealed significant seasonal variation in bacterial populations of Mediterranean Sea oysters, as opposed to Red Sea ones that were stable throughout the year. We suggest that this conserved association between bacteria and oyster reflects either a symbiosis between the oyster host and some of its bacteria, a co-invasion of both parties, or both.  相似文献   
107.
Gene families with multiple members are predicted to have individuals with overlapping functions. We examined all of the Arabidopsis (Arabidopsis thaliana) myosin family members for their involvement in Golgi and other organelle motility. Truncated fragments of all 17 annotated Arabidopsis myosins containing either the IQ tail or tail domains only were fused to fluorescent markers and coexpressed with a Golgi marker in two different plants. We tracked and calculated Golgi body displacement rate in the presence of all myosin truncations and found that tail fragments of myosins MYA1, MYA2, XI-C, XI-E, XI-I, and XI-K were the best inhibitors of Golgi body movement in the two plants. Tail fragments of myosins XI-B, XI-F, XI-H, and ATM1 had an inhibitory effect on Golgi bodies only in Nicotiana tabacum, while tail fragments of myosins XI-G and ATM2 had a slight effect on Golgi body motility only in Nicotiana benthamiana. The best myosin inhibitors of Golgi body motility were able to arrest mitochondrial movement too. No exclusive colocalization was found between these myosins and Golgi bodies in our system, although the excess of cytosolic signal observed could mask myosin molecules bound to the surface of the organelle. From the preserved actin filaments found in the presence of enhanced green fluorescent protein fusions of truncated myosins and the motility of myosin punctae, we conclude that global arrest of actomyosin-derived cytoplasmic streaming had not occurred. Taken together, our data suggest that the above myosins are involved, directly or indirectly, in the movement of Golgi and mitochondria in plant cells.The Arabidopsis (Arabidopsis thaliana) myosin gene family contains 17 members: myosin group XI, which includes 13 members (myosins XI-A, -B, -C, -D, -E, -F, -G, -H, -I, -J, and -K, MYA1, and MYA2), and myosin group VIII, which includes four members (ATM1, ATM2, myosin VIIIA, and myosin VIIIB). Both groups are related to unconventional myosin V (Berg et al., 2001; Foth et al., 2006). The Arabidopsis myosins contain a conserved motor domain with ATPase and actin-binding activities, a number of IQ domains that bind myosin light chains, a coiled-coil domain for dimerization, and a specific tail that binds different cargo (Kinkema and Schiefelbein, 1994; Tominaga et al., 2003). Using these functional domains, myosins convert chemical energy from ATP hydrolysis into physical movement along actin fibers, carrying with their tails membrane-bound organelles or RNA/protein complexes (Li and Nebenführ, 2008b).Plant myosins have been implicated in various cellular activities, such as cytoplasmic streaming (Shimmen and Yokota, 2004; Esseling-Ozdoba et al., 2008), plasmodesmata function (Baluska et al., 2001; Volkmann et al., 2003), organelle movement (Nebenführ et al., 1999; Jedd and Chua, 2002), cytokinesis (Molchan et al., 2002; Collings et al., 2003; Volkmann et al., 2003), endocytosis (Volkmann et al., 2003; Baluska et al., 2004; Samaj et al., 2005), and targeted RNA transport (Hamada et al., 2003). Actomyosin mediated cytoplasmic streaming found in various algae cells reach velocities of up to 100 μm s−1, which is the fastest known myosin-mediated movement (Shimmen and Yokota, 1994).The information that exists regarding specific roles of each plant myosin is rather limited. Immunolocalization studies indicated that myosin XIs are associated with various particles in lily (Lilium longiflorum) and tobacco (Nicotiana tabacum) pollen tubes (Yokota et al., 1995), with mitochondria, plastids, and low-density membranes in maize (Zea mays) root cells (Liu et al., 2001; Wang and Pesacreta, 2004), and with endoplasmic reticulum (ER) in tobacco BY2 cells (Yokota et al., 2008). Specific antibodies against MYA2 showed that it is associated with peroxisomes in epidermal and guard cells of Arabidopsis leaves (Hashimoto et al., 2005). More recent studies using recombinant DNA fusions to fluorescent proteins showed localization of the tails of MYA2, MYA1, XI-K, and XI-I to peroxisomes (Li and Nebenführ, 2007; Reisen and Hanson, 2007) and MYA1 partially localized to Golgi (Li and Nebenführ, 2007). Furthermore, it was shown that peroxisomes, Golgi, and mitochondrial motility were arrested by dominant negative mutants of myosin XI-K and myosin XI-E (Avisar et al., 2008b; Sparkes et al., 2008). Arrest of organelle motility was also found in Arabidopsis knockout plants xi-k and mya2 (Peremyslov et al., 2008) and double mutants xi-k/mya1, xi-k/mya2, and mya2/xi-b (Prokhnevsky et al., 2008). In contrast, the association of the single globular tail domain of MYA1 or MYA2 with peroxisomes did not arrest their motility (Li and Nebenführ, 2007). Knockout plants for myosin xi-k and mya2 had root hair phenotypes (Ojangu et al., 2007; Peremyslov et al., 2008); however, all other 11 myosin XI single knockouts looked normal under regular growth conditions (Peremyslov et al., 2008). Reciprocal stimulation between dimerization via the coiled-coil domains of MYA1 and organelle binding was suggested (Li and Nebenführ, 2008a). As for myosin VIII, immunostaining studies showed that it localized to the cell periphery at plant-specific structures such as plasmodesmata and cytokinetic cell plates (Reichelt et al., 1999; Baluska et al., 2001). Recent data from our laboratory and from others confirmed the presence of myosin VIII in plasmodesmata (Golomb et al., 2008) and the cell plate (Van Damme et al., 2004) and further provided evidence for its involvement with endocytosis (Golomb et al., 2008; Sattarzadeh et al., 2008) and its colocalization with the ER (Golomb et al., 2008). In addition, it was shown that myosin VIII is involved in the plasmodesmata targeting of the beet yellows virus protein Hsp70h (Avisar et al., 2008a).We have determined the role of all 17 genes through transient overexpression of dominant negative forms in leaf epidermal cells. Fluorescent dominant negative fusions not only provide data on the subcellular location but also provide a relatively easy way of determining expression. Additionally, overexpression of dominant negative forms can expose a role of an individual member, which might be masked by redundant activity, if it was silenced. In order to undertake such a large-scale study, we needed to choose an efficient, fast, and reproducible expression system. Therefore, Agrobacterium tumefaciens-mediated transient expression in Nicotiana leaves was suitable.  相似文献   
108.
Interfering with small RNA production is a common strategy of plant viruses. A unique class of small RNAs that require microRNA and short interfering (siRNA) biogenesis for their production is termed trans-acting short interfering RNAs (ta-siRNAs). Tomato (Solanum lycopersicum) wiry mutants represent a class of phenotype that mimics viral infection symptoms, including shoestring leaves that lack leaf blade expansion. Here, we show that four WIRY genes are involved in siRNA biogenesis, and in their corresponding mutants, levels of ta-siRNAs that regulate AUXIN RESPONSE FACTOR3 (ARF3) and ARF4 are reduced, while levels of their target ARFs are elevated. Reducing activity of both ARF3 and ARF4 can rescue the wiry leaf lamina, and increased activity of either can phenocopy wiry leaves. Thus, a failure to negatively regulate these ARFs underlies tomato shoestring leaves. Overexpression of these ARFs in Arabidopsis thaliana, tobacco (Nicotiana tabacum), and potato (Solanum tuberosum) failed to produce wiry leaves, suggesting that the dramatic response in tomato is exceptional. As negative regulation of orthologs of these ARFs by ta-siRNA is common to land plants, we propose that ta-siRNA levels serve as universal sensors for interference with small RNA biogenesis, and changes in their levels direct species-specific responses.  相似文献   
109.
This work investigates the potential probiotic effect of marennine - a natural pigment produced by the diatom Haslea ostrearia - on Vibrio splendidus. These marine bacteria are often considered a threat for aquaculture; therefore, chemical antibiotics can be required to reduce bacterial outbreaks. In vivo 2H solid-state NMR was used to probe the effects of marennine on the bacterial membrane in the exponential and stationary phases. Comparisons were made with polymyxin B (PxB) - an antibiotic used in aquaculture and known to interact with Gram(?) bacteria membranes. We also investigated the effect of marennine using 31P solid-state NMR on model membranes. Our results show that marennine has little effect on phospholipid headgroups dynamics, but reduces the acyl chain fluidity. Our data suggest that the two antimicrobial agents perturb V. splendidus membranes through different mechanisms. While PxB would alter the bacterial outer and inner membranes, marennine would act through a membrane stiffening mechanism, without affecting the bilayer integrity. Our study proposes this microalgal pigment, which is harmless for humans, as a potential treatment against vibriosis.  相似文献   
110.
Biological molecular processes are often studied in model systems, which simplifies their inherent complexity but may cause investigators to lose sight of the effects of the molecular environment. Information obtained in this way must therefore be validated by experiments in the cell. NMR has been used to study biological cells since the early days of its development. The first NMR structural studies of a protein inside a cell (by solution-state NMR) and of a membrane protein (by solid-state NMR) were published in 2001 and 2011, respectively. More recently, dynamic nuclear polarization, which has been used to enhance the signal in solid-state NMR, has also been applied to the study of frozen cells. Much progress has been made in the past 5 years, and in this review we take stock of this new technique, which is particularly appropriate for the study of biological membranes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号