首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   152篇
  免费   6篇
  国内免费   2篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2019年   2篇
  2018年   4篇
  2016年   6篇
  2015年   8篇
  2014年   10篇
  2013年   9篇
  2012年   14篇
  2011年   8篇
  2010年   14篇
  2009年   6篇
  2008年   4篇
  2007年   12篇
  2006年   13篇
  2005年   10篇
  2004年   6篇
  2003年   12篇
  2002年   5篇
  2001年   6篇
  1999年   1篇
  1992年   1篇
  1991年   1篇
  1988年   1篇
  1987年   1篇
排序方式: 共有160条查询结果,搜索用时 15 毫秒
41.
The intestinal brush border (BB) Na+/H+ exchanger isoform 3 (NHE3) is acutely inhibited by elevation in the concentration of free intracellular Ca2+ ([Ca2+]i) by the cholinergic agonist carbachol and Ca2+ ionophores in a protein kinase C (PKC)-dependent manner. We previously showed that elevating [Ca2+]i with ionomycin rapidly inhibited NHE3 activity and decreased the amount of NHE3 on the plasma membrane in a manner that depended on the presence of the PDZ domain-containing protein E3KARP (NHE3 kinase A regulatory protein, also called NHERF2). The current studies were performed in PS120 fibroblasts (NHE-null cell line) stably transfected with NHE3 and E3KARP to probe the mechanism of PKC involvement in Ca2+ regulation of NHE3. Pretreatment with the general PKC inhibitor, GF109203X prevented ionomycin inhibition of NHE3 without altering basal NHE3 activity. Similarly, the Ca2+-mediated inhibition of NHE3 activity was blocked after pretreatment with the conventional PKC inhibitor Gö-6976 and a specific PKC pseudosubstrate-derived inhibitor peptide. [Ca2+]i elevation caused translocation of PKC from cytosol to membrane. PKC bound to the PDZ1 domain of GST-E3KARP in vitro in a Ca2+-dependent manner. PKC and E3KARP coimmunoprecipitated from cell lysates; this occurred to a lesser extent at basal [Ca2+]i and was increased with ionomycin exposure. Biotinylation studies demonstrated that [Ca2+]i elevation induced oligomerization of NHE3 in total lysates and decreased the amount of plasma membrane NHE3. Treatment with PKC inhibitors did not affect the oligomerization of NHE3 but did prevent the decrease in surface amount of NHE3. These results suggest that PKC is not necessary for the Ca2+-dependent formation of the NHE3 plasma membrane complex, although it is necessary for decreasing the membrane amounts of NHE3, probably by stimulating NHE3 endocytosis. Na absorption; PDZ domains; signal complex  相似文献   
42.
43.
Although ezrin-radixin-moesin-binding phosphoprotein 50 (EBP50) is a PDZ domain-containing protein known to bind to various channels, receptors, cytoskeletal elements, and cytoplasmic proteins, there is still very little evidence for a role of EBP50 in the regulation of receptor signal transduction. In this report, we show that EBP50 inhibits the phospholipase C (PLC)-beta-mediated inositol phosphate production of a Galpha(q)-coupled receptor as well as PLC-beta activation by the constitutively active Galpha(q)-R183C mutant. Coimmunoprecipitation experiments revealed that EBP50 interacts with Galpha(q) and to a greater extent with Galpha(q)-R183C. Agonist stimulation of the thromboxane A(2) receptor (TP receptor) resulted in an increased interaction between EBP50 and Galpha(q), suggesting that EBP50 preferentially interacts with activated Galpha(q). We also demonstrate that EBP50 inhibits Galpha(q) signaling by preventing the interaction between Galpha(q) and the TP receptor and between activated Galpha(q) and PLC-beta1. Investigation of the EBP50 regions involved in Galpha(q) binding indicated that its two PDZ domains are responsible for this interaction. This study constitutes the first demonstration of an interaction between a G protein alpha subunit and another protein through a PDZ domain, with broad implications in the regulation of diverse physiological systems.  相似文献   
44.
Syzygium aromaticum is used in traditional and modern medicine for its various and outstanding pharmacological properties. Here, we studied the chemical composition of hexane extract and non-polar fractions (NPF) obtained from the maceration and fractionation of clove buds, in order to evaluate their in vitro antimycobacterial activity, as well as their contribution against efflux pump (EP) resistance through molecular docking experiments. The gas chromatography-mass spectrometry (GC–MS) analysis of the volatile profiles revealed the presence of eugenol, followed by eugenyl acetate, and β-caryophyllene as common major compounds. According to Resazurin microtiter assay (REMA), Mycobacterium tuberculosis H37Rv strain was sensitive to all volatile samples at concentration range between 10 and 100 μg/mL. The NPF of ethanol extract was the best inhibitor with a MIC=10 μg/mL. The in silico study revealed a strong binding affinity between eugenol and Mmr EP protein (−8.1 Kcal/mol), involving two binding modes of hydrogen bond and π-alkyl interactions. The non-polarity character of clove volatile constituents, and their potential additive or synergistic effects could be responsible for the antimycobacterial activity. In addition, these findings suggest the benefic effect of eugenol in the management of mycobacterium drug resistance, whether as potential inhibitor of Mmr drug EP, or modulator during combination therapy.  相似文献   
45.
To compare the effects of two nap opportunities (20 and 90 min) to countermeasure the transient naturally occurring increased sleepiness and decreased performances during the post-lunch dip (PLD). Fourteen highly trained judokas completed in a counterbalanced and randomized order three test sessions (control (No-nap), 20- (N20) and 90-min (N90) nap opportunities). Test sessions consisted of the running-based anaerobic sprint test (RAST), simple and multiple-choice reaction times (MCRT) and the Epworth sleepiness scale (ESS). From the RAST, the maximum (Pmax), mean (Pmean) and minimum (Pmin) powers were calculated. Blood samples were taken before and after the RAST to measure the effect of pre-exercise napping on energetic and muscle damage biomarkers and antioxidant defense. N20 increased Pmax and Pmean compared to No-nap (p < 0.001, d = 0.59; d = 0.66) and N90 (p < 0.001, d = 0.98; d = 0.72), respectively. Besides, plasma lactate and creatinine increased only when the exercise was performed after N20. Both N20 (p < 0.001, d = 1.18) and N90 (p < 0.01, d = 0.78) enhanced post-exercise superoxide dismutase activity compared to No-nap. However, only N20 enhanced post-exercise glutathione peroxidase activity (p < 0.001, d = 1.01) compared to pre-nap. Further, MCRT performance was higher after N20 compared to No-nap and N90 (p < 0.001, d = 1.15; d = 0.81, respectively). Subjective sleepiness was lower after N20 compared to No-nap (p < 0.05, d = 0.92) and N90 (p < 0.01, d = 0.89). The opportunity to nap for 20 min in the PLD enhanced RAST, MCRT performances, and antioxidant defense, and decreased sleepiness. However, the opportunity of 90 min nap was associated with decreased repeated sprint performances and increased sleepiness, probably because of the sleep inertia.  相似文献   
46.
The mechanisms involved in the cytotoxic action of oxysterols in the pathogenesis of atherosclerosis still remain poorly understood. Among the major oxysterols present in oxidized low-density lipoprotein, we show here that 7-ketocholesterol (7-Kchol) induces oxidative stress and/or apoptotic events in human aortic smooth muscle cells (SMCs). This specific effect of 7-Kchol is mediated by a robust upregulation (threefold from the basal level) of Nox-4, a reactive oxygen species (ROS)-generating NAD(P)H oxidase homologue. This effect was highlighted by silencing Nox-4 expression with a specific small interfering RNA, which significantly reduced the 7-Kchol-induced production of ROS and abolished apoptotic events. Furthermore, the 7-Kchol activating pathway included an early triggering of endoplasmic reticulum stress, as assessed by transient intracellular Ca(2+) oscillations, and the induction of the expression of the cell death effector CHOP and of GRP78/Bip chaperone via the activation of IRE-1, all hallmarks of the unfolded protein response (UPR). We also showed that 7-Kchol activated the IRE-1/Jun-NH(2)-terminal kinase (JNK)/AP-1 signaling pathway to promote Nox-4 expression. Silencing of IRE-1 and JNK inhibition downregulated Nox-4 expression and subsequently prevented the UPR-dependent cell death induced by 7-Kchol. These findings demonstrate that Nox-4 plays a key role in 7-Kchol-induced SMC death, which is consistent with the hypothesis that Nox-4/oxysterols are involved in the pathogenesis of atherosclerosis.  相似文献   
47.
AIMS: The present work aims to study a new chitinase from Bacillus thuringiensis subsp. kurstaki. METHODS AND RESULTS: BUPM255 is a chitinase-producing strain of B. thuringiensis, characterized by its high chitinolytic and antifungal activities. The cloning and sequencing of the corresponding gene named chi255 showed an open reading frame of 2031 bp, encoding a 676 amino acid residue protein. Both nucleotide and amino acid sequences similarity analyses revealed that the chi255 is a new chitinase gene, presenting several differences from the published chi genes of B. thuringiensis. The identification of chitin hydrolysis products resulting from the activity, exhibited by Chi255 through heterologous expression in Escherichia coli revealed that this enzyme is a chitobiosidase. CONCLUSIONS: Another chitinase named Chi255 belonging to chitobiosidase class was evidenced in B. thuringiensis subsp. kurstaki and was shown to present several differences in its amino acid sequence with those of published ones. The functionality of Chi255 was proved by the heterologous expression of chi255 in E. coli. SIGNIFICANCE AND IMPACT OF THE STUDY: The addition of the sequence of chi255 to the few sequenced B. thuringiensis chi genes might contribute to a better investigation of the chitinase 'structure-function' relation.  相似文献   
48.
We previously reported an increasedsecretion of amyloid precursor-like protein 2 (APLP2) in the healingcorneal epithelium. The present study sought to investigate signaltransduction pathways involved in APLP2 shedding in vitro. APLP2 wasconstitutively shed and released into culture medium inSV40-immortalized human corneal epithelial cells as assessed by Westernblotting, flow cytometry, and indirect immunofluorescence. Activationof protein kinase C (PKC) by phorbol 12-myristate 13-acetate (PMA)caused significant increases in APLP2 shedding. This was inhibited by staurosporine and a PKC--specific, N-myristoylated peptideinhibitor. Epidermal growth factor (EGF) also induced APLP2accumulation in culture medium. Basal APLP2 shedding as well as thatinduced by PMA and EGF was blocked by a mitogen-activated proteinkinase (MAPK) kinase inhibitor, U-0126. Our results suggest that MAPK activity accounts for basal as well as PKC- and EGF-induced APLP2 shedding. In addition, PKC- may be involved in the induction ofAPLP2 shedding in corneal epithelial cells.

  相似文献   
49.
Genesis of natural biocomposite-based materials, such as bone, cartilage, and teeth, involves interactions between organic and inorganic systems. Natural biopolymers, such as peptide motif sequences, can be used as a template to direct the nucleation and crystallization of hydroxyapatite (HA). In this study, a natural motif sequence consisting of 13 amino acids present in the first helix of osteocalcin was selected based on its calcium binding ability and used as substrate for nucleation of HA crystals. The acidic (acidic osteocalcin-derived peptide (OSC)) and amidic (amidic osteocalcin-derived peptide (OSN)) forms of this sequence were synthesized to investigate the effects of different C termini on the process of biomineralization. Electron microscopy analyses show the formation of plate-like HA crystals with random size and shape in the presence of OSN. In contrast, spherical amorphous calcium phosphate is formed in the presence of OSC. Circular dichroism experiments indicate conformational changes of amidic peptide to an open and regular structure as a consequence of interaction with calcium and phosphate. There is no conformational change detectable in OSC. It is concluded that HA crystal formation, which only occurred in OSN, is attributable to C-terminal amidation of a natural peptide derived from osteocalcin. It is also proposed that natural peptides with the ability to promote biomineralization have the potential to be utilized in hard tissue regeneration.  相似文献   
50.
The risk factors for cerebral malaria (CM) and the wide variation in clinical manifestations of malaria are poorly understood. Recent studies indicate that interferon gamma inducible chemokine, CXCL10, is a strong predictor of both human and experimental cerebral malaria. Increased plasma and cerebrospinal fluid levels of CXCL10 were tightly associated with fatal CM in Indian and Ghanaian patients. In the present study, we hypothesized that in a subset of malaria patients, CM susceptibility is associated with variation in CXCL10 expression. We determined whether polymorphisms in the CXCL10 gene promoter region played a role in the clinical status of malaria patients and addressed the genetic basis of CXCL10 expression during malaria infection. Following extensive bioinformatics analyses, two reported single nucleotide polymorphisms in the CXCL10 promoter (−135G>A [rs56061981] and −1447A>G [rs4508917]) were identified among 66 CM and 69 non-CM Indian patients using PCR-restriction fragment length polymorphism assay. Individuals with the −1447(A/G) genotype were susceptible to CM (adjusted odds ratio [AOR] = 2.60, 95% CI = 1.51–5.85, p = 0.021). In addition, individuals with the −1447(A/G) genotype had significantly higher plasma CXCL10 levels than individuals with the −1447(A/A) genotype. Stratifying patients according to gender, the observed association of CM with over expression of CXCL10 were more pronounced in males than in female patients (AOR = 5.47, 95% CI = 1.34–22.29, p = 0.018). Furthermore, −135G>A polymorphism conferred a decreased risk of CM among males (AOR = 0.19, 95% CI = 0.05–0.78, p = 0.021). Polymorphisms in the CXCL10 gene promoter sequence were associated with increased CXCL10 production, which is linked to severity of CM. These results suggest that the −1447A>G polymorphism in CXCL10 gene promoter could be partly responsible for the reported variation underlying severity of CM outcomes particularly in males.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号