首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   639篇
  免费   96篇
  2023年   5篇
  2022年   4篇
  2021年   8篇
  2020年   5篇
  2019年   13篇
  2018年   15篇
  2017年   11篇
  2016年   21篇
  2015年   15篇
  2014年   36篇
  2013年   36篇
  2012年   22篇
  2011年   25篇
  2010年   25篇
  2009年   29篇
  2008年   29篇
  2007年   20篇
  2006年   32篇
  2005年   19篇
  2004年   18篇
  2003年   20篇
  2002年   23篇
  2001年   25篇
  2000年   26篇
  1999年   24篇
  1998年   15篇
  1997年   8篇
  1996年   14篇
  1995年   9篇
  1994年   13篇
  1993年   19篇
  1992年   17篇
  1991年   8篇
  1990年   18篇
  1989年   13篇
  1988年   11篇
  1987年   21篇
  1986年   5篇
  1985年   6篇
  1984年   6篇
  1983年   3篇
  1982年   4篇
  1981年   3篇
  1980年   5篇
  1979年   4篇
  1978年   3篇
  1971年   2篇
  1970年   3篇
  1967年   2篇
  1965年   2篇
排序方式: 共有735条查询结果,搜索用时 31 毫秒
81.
Technological developments allow increasing numbers of markers to be deployed in case-control studies searching for genetic factors that influence disease susceptibility. However, with vast numbers of markers, true 'hits' may become lost in a sea of false positives. This problem may be particularly acute for infectious diseases, where the control group may contain unexposed individuals with susceptible genotypes. To explore this effect, we used a series of stochastic simulations to model a scenario based loosely on bovine tuberculosis. We find that a candidate gene approach tends to have greater statistical power than studies that use large numbers of single nucleotide polymorphisms (SNPs) in genome-wide association tests, almost regardless of the number of SNPs deployed. Both approaches struggle to detect genetic effects when these are either weak or if an appreciable proportion of individuals are unexposed to the disease when modest sample sizes (250 each of cases and controls) are used, but these issues are largely mitigated if sample sizes can be increased to 2000 or more of each class. We conclude that the power of any genotype-phenotype association test will be improved if the sampling strategy takes account of exposure heterogeneity, though this is not necessarily easy to do.  相似文献   
82.

Background

Prenatal screening for Down Syndrome (DS) would benefit from an increased number of biomarkers to improve sensitivity and specificity. Improving sensitivity and specificity would decrease the need for potentially risky invasive diagnostic procedures.

Results

We have performed an in depth two-dimensional difference gel electrophoresis (2D DIGE) study to identify potential biomarkers. We have used maternal plasma samples obtained from first and second trimesters from mothers carrying DS affected fetuses compared with mothers carrying normal fetuses. Plasma samples were albumin/IgG depleted and expanded pH ranges of pH 4.5 - 5.5, pH 5.3 - 6.5 and pH 6 - 9 were used for two-dimensional gel electrophoresis (2DE). We found no differentially expressed proteins in the first trimester between the two groups. Significant up-regulation of ceruloplasmin, inter-alpha-trypsin inhibitor heavy chain H4, complement proteins C1s subcomponent, C4-A, C5, and C9 and kininogen 1 were detected in the second trimester in maternal plasma samples where a DS affected fetus was being carried. However, ceruloplasmin could not be confirmed as being consistently up-regulated in DS affected pregnancies by Western blotting.

Conclusions

Despite the in depth 2DE approach used in this study the results underline the deficiencies of gel-based proteomics for detection of plasma biomarkers. Gel-free approaches may be more productive to increase the number of plasma biomarkers for DS for non-invasive prenatal screening and diagnosis.  相似文献   
83.
The shape and motion of cells can yield significant insights into the internal operation of a cell. We present a simple, yet versatile, framework that provides multiple metrics of cell shape and cell shape dynamics. Analysis of migrating Dictyostelium discoideum cells shows that global and local metrics highlight distinct cellular processes. For example, a global measure of shape shows rhythmic oscillations suggestive of contractions, whereas a local measure of shape shows wave-like dynamics indicative of protrusions. From a local measure of dynamic shape, or boundary motion, we extract the times and locations of protrusions and retractions. We find that protrusions zigzag, while retractions remain roughly stationary along the boundary. We do not observe any temporal relationship between protrusions and retractions. Our analysis framework also provides metrics of the boundary as whole. For example, as the cell speed increases, we find that the cell shape becomes more elongated. We also observe that while extensions and retractions have similar areas, their shapes differ.  相似文献   
84.
85.
Certain cognitive processes, including spatial ability, decline with normal aging. Spatial ability is also a cognitive domain with robust sex differences typically favoring males. However, tests of spatial ability do not seem to measure a homogeneous class of processes. For many, mentally matching rotated three-dimensional images is the gold standard for measuring spatial cognition in humans, while the Morris water task (MWT) is a preferred method in the domain of nonhuman animal research. The MWT is sensitive to hippocampal damage, a structure critical for normal learning and memory and often implicated in age-related cognitive decline. A computerized (virtual) version of the MWT (VMWT) appears to require and engage human hippocampal circuitry, and has proven useful in studying sex differences and testing spatial learning theories. In Experiment 1, we tested participants (20-90 years of age) in the VMWT and compared their performance to that on the Vandenberg Mental Rotation Test. We report an age-related deficit in performance on both tasks. In Experiment 2, we tested young (age 20-39) and elderly (age >60) participants in the VMWT and correlated their performance to the circulating levels of testosterone and cortisol. Our findings indicate that the persistence of male spatial advantage may be related to circulating testosterone, but not cortisol levels, and independent of generalized age-related cognitive decline.  相似文献   
86.
Genomic DNA Amplification from a Single Bacterium   总被引:11,自引:0,他引:11       下载免费PDF全文
Genomic DNA was amplified about 5 billion-fold from single, flow-sorted bacterial cells by the multiple displacement amplification (MDA) reaction, using 29 DNA polymerase. A 662-bp segment of the 16S rRNA gene could be accurately sequenced from the amplified DNA. MDA methods enable new strategies for studying nonculturable microorganisms.  相似文献   
87.
Tracz SM  Abedini A  Driscoll M  Raleigh DP 《Biochemistry》2004,43(50):15901-15908
Numerous polypeptides and proteins form amyloid deposits in vivo or in vitro. The mechanism of amyloid formation is not well-understood particularly in the case where unstructured polypeptides assemble to form amyloid. Aromatic-aromatic interactions are known to be important in globular proteins, and the possibility that they might play a key role in amyloid formation has been raised. The results of Ala-scanning experiments on short polypeptides derived from Amylin have suggested that aromatic interactions could be particularly important for this system. Here, we examine a set of Amylin-derived polypeptides in which the single aromatic residue has been substituted with a Leu and Ala. A peptide corresponding to residues 21-29 with a Phe-23 to Leu substitution, a free N terminus, and amidated C terminus readily forms amyloid. Shorter peptides derived from the putative minimal amyloid-forming segment of Amylin, residues 22-27, also form amyloid when Phe-23 is replaced by Leu. Amyloid formation is more facile when the N terminus is deprotonated and the peptide is uncharged. Substitution of the Phe with Ala results in a peptide that is noticeably less prone to form amyloid. A peptide corresponding to residues 10-19 of human Amylin with blocked termini and the sole aromatic residue, Phe-15, substituted by Leu readily forms amyloid. A Phe-15 to Ala substitution reduces significantly the ability to form amyloid. These results indicate that an aromatic residue is not required for amyloid formation in these systems and indicates that other factors such as size, beta-sheet propensity, and hydrophobicity of the side chain in question are also important.  相似文献   
88.
Nuclear hormone receptors, such as the ecdysone receptor, often display a large amount of induced fit to ligands. The size and shape of the binding pocket in the EcR subunit changes markedly on ligand binding, making modelling methods such as docking extremely challenging. It is, however, possible to generate excellent 3D QSAR models for a given type of ligand, suggesting that the receptor adopts a relatively restricted number of binding site configurations or ‘attractors’. We describe the synthesis, in vitro binding and selected in vivo toxicity data for γ-methylene γ-lactams, a new class of high-affinity ligands for ecdysone receptors from Bovicola ovis (Phthiraptera) and Lucilia cuprina (Diptera). The results of a 3D QSAR study of the binding of methylene lactams to recombinant ecdysone receptor protein suggest that this class of ligands is indeed recognised by a single conformation of the EcR binding pocket.  相似文献   
89.
P pili are extracellular appendages responsible for the targeting of uropathogenic Escherichia coli to the kidney. They are assembled by the chaperone-usher (CU) pathway of pilus biogenesis involving two proteins, the periplasmic chaperone PapD and the outer membrane assembly platform, PapC. Many aspects of the structural biology of the Pap CU pathway have been elucidated, except for the C-terminal domain of the PapC usher, the structure of which is unknown. In this report, we identify a stable and folded fragment of the C-terminal region of the PapC usher and determine its structure using both X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy. These structures reveal a β-sandwich fold very similar to that of the plug domain, a domain of PapC obstructing its translocation domain. This structural similarity suggests similar functions in usher-mediated pilus biogenesis, playing out at different stages of the process. This structure paves the way for further functional analysis targeting surfaces common to both the plug and the C-terminal domain of PapC.Adhesive surface organelles termed pili mediate the adhesion of bacteria to host cells. Pili assembled by the chaperone-usher (CU) pathway form one of five major classes of nonflagellar surface appendages in Gram-negative bacteria, with the P pilus system from uropathogenic Escherichia coli being one of the two best-characterized CU systems. These pili are multisubunit structures consisting of two distinct subassemblies, a rigid rod with a diameter of 6.8 nm and a distal flexible tip fibrillum with a diameter of 2 nm (18, 21). In P pili the helical rod is comprised of more than 1,000 copies of the PapA subunits arranged in a right-handed helical cylinder with 3.3 subunits per turn (3, 8, 14), and the tip fibrillum is comprised of 5 to 10 copies of the PapE subunits (21). Two “adaptor” subunits, PapK and PapF, connect the PapE tip fibrillum to the PapA rod and the PapE tip fibrillum to the distal PapG adhesin (16, 21). The proximal end of the pilus is terminated by the PapH subunit (2, 50). The PapG adhesin mediates the bacterial colonization of the kidney (25, 40) by binding to the globoseries of glycolipids present in the human kidney (25, 40) (Fig. (Fig.1A),1A), an event that is critical in pyelonephritis.Open in a separate windowFIG. 1.(A) Schematic diagram of a P pilus assembled in the usher translocation platform. Subunits are represented by oval shapes, and N-terminal extensions are represented by short rectangular shapes. The usher homodimer is represented in the outer membrane (OM). In the usher protomer through which the nascent pilus passes, two positions of the plug are indicated by P where the plug is positioned to the side of the transmembrane barrel''s lumen and P′ where the plug has swung into the periplasmic space. (B) Domain organization of the PapC usher based on amino acid sequence. The C-terminal domain sequences are indicated in marine blue. The constructs used in this study are schematically represented underneath; all converge to a fragment containing residues 722 to 809, termed the “PapC CTD.” Ntd, N-terminal domain. (C) Identification of a discrete folding unit at the C terminus of PapC. Shown is an SDS-PAGE gel stained with Coomassie blue of the eluted PapC C-terminal fragments obtained with a construct comprising residues 641 to 809 after the first purification step. PS, prestained protein standards; Inj, loaded sample; FT, flowthrough.The assembly of pili is a coordinated process requiring two proteins: a chaperone and an outer membrane assembly platform, the usher. Pilus subunits are translocated into the periplasm via the general secretory machinery (38, 47). The binding of the PapD chaperone to the nascently translocated subunits facilitates their folding on the chaperone template. The chaperone remains bound to the folded subunits capping their interactive surfaces, thus preventing nonproductive interactions in the periplasm (7). Chaperone-subunit complexes are then targeted to the usher (PapC), where subunits polymerize in an ordered fashion and translocate across the outer membrane through the usher pore (47, 52). Subunit folding and stabilization occur when the chaperone and subunit form a complex through a mechanism termed donor strand complementation (DSC) (9, 41). In this mechanism the C-terminally truncated Ig-like fold of the pilus subunits, which contains only six of the seven β-strands that constitute the canonical Ig fold, is complemented by the donation of a β-strand from the chaperone (9, 41). Chaperone-subunit complexes are then targeted to the outer membrane usher, where the chaperone is released and subunits are noncovalently joined to preceding subunits in the nascent pilus fiber. This polymerization process is made possible by the presence of a disordered N-terminal extension sequence (NTES) in each subunit (except the adhesin) (41), which during pilus assembly displaces the strand donated by the chaperone, thereby substituting for the missing secondary structure in the previously assembled subunit. This mechanism is called donor-strand exchange (DSE) (9, 41, 42, 55). It is believed that this structural reorganization provides the driving force for pilus biogenesis, since no ATP hydrolysis or other type of external energy source is required (17, 56).DSE occurs at the outer membrane usher, which acts as a catalyst for polymerization (34). Biophysical and cryo-electron microscopy (EM) studies of the FimD usher (a close homolog of PapC) have shown that the usher is a twinned pore in both detergent and lipid bilayers (23, 46). Only one pore is used for secretion, but two pores are required for subunit recruitment (39). For PapC, both monomers and dimers have been described (15, 39). The usher has four functional domains (Fig. (Fig.1B):1B): a translocation domain forming a β-barrel with 24 transmembrane β-strands (15, 39), a plug domain in the middle of the translocation domain, and two periplasmic domains, one at each of the N- and C-terminal ends of the usher polypeptide (35, 48). The plug domain has a β-sandwich fold and completely occludes the pore in the inactive usher. Its function, besides gating the channel, seems to be further associated with pilus biogenesis since the deletion of the plug domain abolishes pilus formation in vitro and in vivo (15, 26, 54). The N-terminal domain selectively binds chaperone-subunit complexes (12, 33). The structure of the N-terminal domain of FimD bound to chaperone-subunit complexes indicated that the first 24 residues of FimD are involved in the recognition of chaperone-subunit complexes; the deletion of this region was shown previously to abolish pilus biogenesis (12, 32, 33).The role of the usher C-terminal domain (CTD) is not well understood. The binding of the chaperone-adhesin complex to the usher C terminus was previously demonstrated in vitro (46), while protease susceptibility in FimD shows that, following targeting to the usher N terminus, the chaperone-adhesin complex forms stable interactions with the FimD C terminus, inducing a conformational change in FimD that may be fundamental in the activation step of pilus biogenesis (29, 30, 43). The structure of the C-terminal domain is unknown and is the only part of the CU pilus biogenesis pathway not yet represented in structural terms. Here we provide evidence for the presence of a discrete folding unit in the PapC CTD and report its structure determined by nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography.  相似文献   
90.
Evaluating, and possibly ameliorating, the effects of base cation depletion in forest soils caused by acid deposition is an important topic in the northeastern United States. We added 850 kg Ca ha−1 as wollastonite (CaSiO3) to an 11.8-ha watershed at the Hubbard Brook Experimental Forest (HBEF), a northern hardwood forest in New Hampshire, USA, in fall 1999 to replace calcium (Ca) leached from the ecosystem by acid deposition over the past 6 decades. Soil microbial biomass carbon (C) and nitrogen (N) concentrations, gross and potential net N mineralization and nitrification rates, soil solution and stream chemistry, soil:atmosphere trace gas (CO2, N2O, CH4) fluxes, and foliar N concentrations have been monitored in the treated watershed and in reference areas at the HBEF before and since the Ca addition. We expected that rates of microbial C and N cycle processes would increase in response to the treatment. By 2000, soil pH was increased by a full unit in the Oie soil horizon, and by 2002 it was increased by nearly 0.5 units in the Oa soil horizon. However, there were declines in the N content of the microbial biomass, potential net and gross N mineralization rates, and soil inorganic N pools in the Oie horizon of the treated watershed. Stream, soil solution, and foliar concentrations of N showed no response to treatment. The lack of stimulation of N cycling by Ca addition suggests that microbes may not be stimulated by increased pH and Ca levels in the naturally acidic soils at the HBEF, or that other factors (for example, phosphorus, or Ca binding of labile organic matter) may constrain the capacity of microbes to respond to increased pH in the treated watershed. Possible fates for the approximately 10 kg N ha−1 decline in microbial and soil inorganic pools include components of the plant community that we did not measure (for example, seedlings, understory shrubs), increased fluxes of N2 and/or N storage in soil organic matter. These results raise questions about the factors regulating microbial biomass and activity in northern hardwood forests that should be considered in the context of proposals to mitigate the depletion of nutrient cations in soil.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号