首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   198篇
  免费   22篇
  2023年   2篇
  2022年   3篇
  2021年   15篇
  2020年   8篇
  2019年   11篇
  2018年   8篇
  2017年   12篇
  2016年   10篇
  2015年   9篇
  2014年   18篇
  2013年   13篇
  2012年   15篇
  2011年   20篇
  2010年   12篇
  2009年   13篇
  2008年   14篇
  2007年   5篇
  2006年   5篇
  2005年   3篇
  2004年   3篇
  2003年   6篇
  2002年   4篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1989年   1篇
  1987年   1篇
  1985年   1篇
  1982年   1篇
  1979年   1篇
  1973年   1篇
排序方式: 共有220条查询结果,搜索用时 15 毫秒
91.
γ-Secretase is a proteolytic membrane complex that processes a variety of substrates including the amyloid precursor protein and the Notch receptor. Earlier we showed that one of the components of this complex, nicastrin (NCT), functions as a receptor for γ-secretase substrates. A recent report challenged this, arguing instead that the Glu-333 residue of NCT predicted to participate in substrate recognition only participates in γ-secretase complex maturation and not in activity per se. Here, we present evidence that Glu-333 directly participates in γ-secretase activity. By normalizing to the active pool of γ-secretase with two separate methods, we establish that γ-secretase complexes containing NCT-E333A are indeed deficient in intrinsic activity. We also demonstrate that the NCT-E333A mutant is deficient in its binding to substrates. Moreover, we find that the cleavage of substrates by γ-secretase activity requires a free N-terminal amine but no minimal length of the extracellular N-terminal stub. Taken together, these studies provide further evidence supporting the role of NCT in substrate recognition. Finally, because γ-secretase cleaves itself during its maturation and because NCT-E333A also shows defects in γ-secretase complex maturation, we present a model whereby Glu-333 can serve a dual role via similar mechanisms in the recruitment of both Type 1 membrane proteins for activity and the presenilin intracellular loop during complex maturation.The brains of Alzheimer disease patients are characterized by dense neuritic plaques that consist of the insoluble β-amyloid peptide (Aβ)2 and neurons containing neurofibrillary tangles of the Tau protein (1, 2). The Aβ peptide is produced via the sequential proteolysis of APP by β- and γ-secretase (3). γ-secretase is a multisubunit complex consisting of at least four proteins: presenilin (PS), NCT, APH-1, and PEN-2, all of which are necessary and sufficient for activity (49). The formation of the γ-secretase complex is tightly controlled, with an ordered assembly of subunits coupled to spatial restriction (10). It is believed that the last step of the complicated γ-secretase maturation and activation process involves in cis endoproteolysis of the PS holoprotein (1113). It is this form of γ-secretase with PS in its N- and C-terminal fragments (NTF and CTF, respectively) that represents the fully mature, proteolytically active enzyme.γ-Secretase is a unique protease that cleaves within the lipid bilayer a large number of Type 1 single transmembrane-spanning proteins that vary widely in their sequence and size (1416). In a previous report, we demonstrated that NCT functions as a substrate receptor for γ-secretase (4). In that report, we showed that NCT recruits substrates that have had their large extracellular domains first removed by an upstream protease in a process termed “ectodomain shedding.” This process generates a new, short extracellular stub with a free N terminus, which is required for proteolysis by γ-secretase. We also established that Glu-333 of NCT participates in activity within the larger context of the DYIGS and peptidase-like (DAP) domain, which shares distant homology to amino- and carboxypeptidases. A recent study by Chávez-Gutiérrez et al. (17) confirmed that mutations at the equivalent rodent residue impair γ-secretase. However, the authors attributed the reduction in activity to a role for Glu-333 in γ-secretase maturation but not directly in activity per se. Although a role for NCT and Glu-333 in γ-secretase assembly and maturation is consistent with our early work (4, 18, 19), the authors'' conclusion that mature γ-secretase complexes containing the Glu-333 mutant NCT are fully active presents a challenge to the model that NCT is a receptor for γ-secretase substrates in mature, active enzyme. Although PS-NTF or -CTF alone is an adequate measure of active γ-secretase complexes, Chávez-Gutiérrez et al. (17) measured specific activity by normalizing γ-secretase products to the sum of PS1-CTF and PEN-2 presumably due to the levels of PS-NTF/CTF by themselves being at the detection limit of Western blotting with electrochemiluminescence (ECL). Such an approach has caveats, as normalizing to the sum of PS1 and PEN-2 does not represent a measurement of the intrinsic activity per single, active enzyme; rather, this mode of normalization instead skews the data to minimize the effects of the mutations, especially when compounded with the unreliability of ECL measurement at the detection limit of Western blotting. Indeed, normalizing to the amount of mature, active γ-secretase in a rigorous, quantitative manner would be necessary to accurately compare the intrinsic activities of wild-type and mutant enzymes.In this study we used two γ-secretase reconstitution methods, including one that bypasses endoproteolysis and two separate normalization approaches to demonstrate that γ-secretase complexes containing NCT-E333A are indeed intrinsically less active than wild-type NCT. We show that this mutant is deficient in its ability to directly bind to γ-secretase substrates. Moreover, we confirm our observations with a second γ-secretase substrate, C83, which is itself the physiological product of α-secretase cleavage of APP. We also examine a series of substrate truncation mutants and find that γ-secretase can cleave substrates that lack the entire extracellular domain, provided that such substrates also contain a free N-terminal amine. Taken together, we conclude that Glu-333 participates directly in activity after γ-secretase complex maturation. Finally, we put forth a model wherein the dual role of Glu-333 in γ-secretase maturation and substrate recognition could be explained in the context of NCT being a substrate receptor. In this model Glu-333 partakes in the recruitment of not only the ectodomain-shed Type 1 membrane proteins but also of the intracellular loop of PS for its endoproteolysis, a hallmark event of γ-secretase maturation and activation.  相似文献   
92.

Background

Plants are affected by several aspects of the soil, which have the potential to exert cascading effects on the performance of herbivorous insects. The effects of biotic and abiotic soil characteristics have however mostly been investigated in isolation, leaving their relative importance largely unexplored. Such is the case for the dune grass Ammophila, whose decline under decreasing sand accretion is argued to be caused by either biotic or abiotic soil properties.

Methodology/Principal Findings

By manipulating dune soils from three different regions, we decoupled the contributions of region, the abiotic and biotic soil component to the variation in characteristics of Ammophila arenaria seedlings and Schizaphis rufula aphid populations. Root mass fraction and total dry biomass of plants were affected by soil biota, although the latter effect was not consistent across regions. None of the measured plant properties were significantly affected by the abiotic soil component. Aphid population characteristics all differed between regions, irrespective of whether soil biota were present or absent. Hence these effects were due to differences in abiotic soil properties between regions. Although several chemical properties of the soil mixtures were measured, none of these were consistent with results for plant or aphid traits.

Conclusions/Significance

Plants were affected more strongly by soil biota than by abiotic soil properties, whereas the opposite was true for aphids. Our results thus demonstrate that the relative importance of the abiotic and biotic component of soils can differ for plants and their herbivores. The fact that not all effects of soil properties could be detected across regions moreover emphasizes the need for spatial replication in order to make sound conclusions about the generality of aboveground-belowground interactions.  相似文献   
93.
Invasive plant species have been suggested to change the composition of the soil community in a way that results in a positive feedback for them and a negative feedback for the native plant community. Carpobrotus edulis, a species native to South Africa, is one of the most aggressive exotic species in Mediterranean Europe. Although several aspects of its invasion biology have been studied, the occurrence of plant-soil feedback has been scarcely investigated. We first checked for the existence of biotic resistance in soils from two invaded sites of Mediterranean Europe and one site in the native area. Secondly, we evaluated the effects of soil conditioning on the germination and plant growth of C. edulis and two key species of native dunes. Finally, we tested the effects of short- and long-term soil conditioning on the performance and reproductive effort of C. edulis. Our results show that at first there is a natural resistance to invasion by the soil biota. Later, biotic resistance in invaded soil is suppressed by the establishment of a soil community that enhances the growth of C. edulis and that negatively influences the growth and survival of the native plants. Long-term soil conditioning in the field resulted in shifts in the balance between vegetative growth and sexual reproduction. Long-term invasion was also reflected in high levels of endophyte colonization by chytrids in roots, although the physiological consequences of this colonization remain unknown. The results obtained illustrate a mechanism that explains how C. edulis breaks the initial biotic resistance of newly-invaded landscapes. Finally, this study highlights the importance of studying plant-soil interactions on different members of the plant community and temporal stages in order to fully understand invasion.  相似文献   
94.
95.
96.
Spontaneous Ca2+ release (SCR) can cause triggered activity and initiate arrhythmias. Intrinsic transmural heterogeneities in Ca2+ handling and their propensity to disease remodeling may differentially modulate SCR throughout the left ventricular (LV) wall and cause transmural differences in arrhythmia susceptibility. Here, we aimed to dissect the effect of cardiac injury on SCR in different regions in the intact LV myocardium using cryoinjury on rat living myocardial slices (LMS). We studied SCR under proarrhythmic conditions using a fluorescent Ca2+ indicator and high-resolution imaging in LMS from the subendocardium (ENDO) and subepicardium (EPI). Cryoinjury caused structural remodeling, with loss in T-tubule density and an increased time of Ca2+ transients to peak after injury. In ENDO LMS, the Ca2+ transient amplitude and decay phase were reduced, while these were not affected in EPI LMS after cryoinjury. The frequency of spontaneous whole-slice contractions increased in ENDO LMS without affecting EPI LMS after injury. Cryoinjury caused an increase in foci that generates SCR in both ENDO and EPI LMS. In ENDO LMS, SCRs were more closely distributed and had reduced latencies after cryoinjury, whereas this was not affected in EPI LMS. Inhibition of CaMKII reduced the number, distribution, and latencies of SCR, as well as whole-slice contractions in ENDO LMS, but not in EPI LMS after cryoinjury. Furthermore, CaMKII inhibition did not affect the excitation–contraction coupling in cryoinjured ENDO or EPI LMS. In conclusion, we demonstrate increased arrhythmogenic susceptibility in the injured ENDO. Our findings show involvement of CaMKII and highlight the need for region-specific targeting in cardiac therapies.  相似文献   
97.
98.
The accumulation of cadmium, copper and zinc and the induction of metallothioneins (MT) in liver of three freshwater fish species was studied. Gudgeon (Gobio gobio), roach (Rutilus rutilus) and perch (Perca fluviatilis) were captured at 6 sampling sites along a cadmium and zinc gradient and one reference site in a tributary of the Scheldt River in Flanders (Belgium).At each site up to 10 individuals per species were collected and analyzed on their general condition factor (K), hepatosomatic index (HSI) and gonadosomatic index (GSI). From each individual fish the liver was dissected and analyzed on Cd, Cu and Zn and MT-content. Although not all species were present at each site, hepatic Cd and Zn levels generally followed the pollution gradient and highest levels were measured in perch, followed by roach and gudgeon. Nevertheless also an effect of site was observed on this order. MT-levels appeared to be the highest in gudgeon although differences with the other species were not very pronounced and depended on the site. Significant relationships were found between hepatic zinc accumulation and MT levels. For each species the ratio MTtheoretical/ MTmeasured was calculated, which gives an indication of the relative capacity to induce MTs and thus immobilize the metals. Perch had the lowest capacity in inducing MTs (highest ratio). Relationships between hepatic metal levels and fish condition indices were absent or very weak.  相似文献   
99.
1. Invertebrate species generally do not respond independently to genotypic variation in plants, giving rise to clusters of species that naturally associate with or avoid certain genotypes. This covariation causes coevolution to be diffuse rather than pairwise. Studies on this topic, however, have never considered the belowground invertebrate community, leaving a critical gap in our understanding. 2. We investigated the covariation among naturally colonising above- and belowground invertebrate species across six genetically distinct populations of the dune grass Ammophila arenaria. After having grown from seed in a common garden, plants were randomised in a single field site to exclude all but broad-sense genetic variation. 3. Strong positive covariation across genotypes among both above- and belowground invertebrates was detected, while correlations between these two groups were negative. This clustering of above- and belowground species matched well with order level taxonomy. Host range, trophic level and food type on the other hand did not correspond well with the clusters. Within the cluster of aboveground fauna, subsequent groupings were not related to any phylogenetic or ecological characteristic, although correlations within these subgroups were very high. We furthermore demonstrated significant differences in multiple invertebrate species occurrence between plant genotypes, in general as well as at the above- and belowground level. 4. The observed strong covariation suggests diffuse coevolution between A. arenaria and its associated invertebrate species. The trade-off between root and shoot invertebrates could however hamper directional selection on resistance to either group. 5. Our results clearly demonstrate the need for studies of plant-animal interactions to include the belowground fauna, as this might drastically alter our general conception of how plants and their associated animal communities interact and how these interactions shape the process of evolution.  相似文献   
100.
Dispersal mechanisms of soil‐borne microfauna have hitherto received little attention. Understanding dispersal mechanisms of these species is important to unravel their basic life history traits, biogeography, exchange of individuals between populations, and local adaptation. Soil‐borne nematodes and root‐feeding nematodes in particular occupy a key position in soil‐food webs and can be determinants for plant growth and vegetation structure and succession. However, their dispersal abilities have been scarcely addressed, predominantly focusing on species of agricultural importance. Still, root‐feeding nematodes are usually considered as being extremely limited and bound to the rhizosphere of plants. We investigated a mechanism for long distance dispersal of root‐feeding nematodes associated to two widespread coastal dune grasses. The nematodes are known to be crucial for the functioning of these grasses. We experimentally tested the hypothesis that root‐feeding nematodes are able to move across long distances inside rhizome fragments that are dispersed by seawater. We also tested the survival capacities of the host plants in seawater. Our study demonstrates that root‐feeding nematodes and plants are able to survive immersion in seawater, providing a mechanism for long distance dispersal of root feeding nematodes together with their host plant. Drifting rhizome fragments enable the exchange of plant material and animals between dune systems. These results provide new insights to understand the ecology of dune vegetation, the interaction with soil‐borne organisms and more importantly, re‐set the scale of spatial dynamics of a group of organisms considered extremely constrained in its dispersal capacities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号