首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1173篇
  免费   122篇
  2023年   7篇
  2022年   7篇
  2021年   31篇
  2020年   15篇
  2019年   23篇
  2018年   24篇
  2017年   18篇
  2016年   32篇
  2015年   42篇
  2014年   63篇
  2013年   88篇
  2012年   83篇
  2011年   101篇
  2010年   45篇
  2009年   62篇
  2008年   63篇
  2007年   60篇
  2006年   43篇
  2005年   33篇
  2004年   44篇
  2003年   38篇
  2002年   45篇
  2001年   17篇
  2000年   18篇
  1999年   8篇
  1998年   11篇
  1997年   9篇
  1996年   9篇
  1995年   4篇
  1994年   12篇
  1993年   11篇
  1992年   14篇
  1991年   15篇
  1990年   9篇
  1989年   16篇
  1988年   21篇
  1987年   6篇
  1986年   10篇
  1985年   13篇
  1984年   12篇
  1983年   9篇
  1982年   7篇
  1981年   7篇
  1980年   10篇
  1979年   9篇
  1978年   6篇
  1975年   6篇
  1973年   8篇
  1972年   6篇
  1970年   4篇
排序方式: 共有1295条查询结果,搜索用时 15 毫秒
101.
We recently published two papers detailing the structures of fluid phase phosphatidylglycerol (PG) lipid bilayers (Ku?erka et al., 2012 J. Phys. Chem. B 116: 232–239; Pan et al., 2012 Biochim. Biophys. Acta Biomembr. 1818: 2135–2148), which were determined using the scattering density profile model. This hybrid experimental/computational technique utilizes molecular dynamics simulations to parse a lipid bilayer into components whose volume probabilities follow simple analytical functional forms. Given the appropriate scattering densities, these volume probabilities are then translated into neutron scattering length density (NSLD) and electron density (ED) profiles, which are used to jointly refine experimentally obtained small angle neutron and X-ray scattering data. However, accurate NSLD and ED profiles can only be obtained if the bilayer's chemical composition is known. Specifically, in the case of neutron scattering, the lipid's exchangeable hydrogens with aqueous D2O must be accounted for, as they can have a measureable effect on the resultant lipid bilayer structures. This was not done in our above-mentioned papers. Here we report on the molecular structures of PG lipid bilayers by appropriately taking into account the exchangeable hydrogens. Analysis indicates that the temperature-averaged PG lipid areas decrease by 1.5 to 3.8 Å2, depending on the lipid's acyl chain length and unsaturation, compared to PG areas when hydrogen exchange was not taken into account.  相似文献   
102.
The prion protein (PrP), widely recognized to misfold into the causative agent of the transmissible spongiform encephalopathies, has previously been shown to bind to lipid membranes with binding influenced by both membrane composition and pH. Aside from the misfolding events associated with prion pathogenesis, PrP can undergo various posttranslational modifications, including internal cleavage events. Alpha- and beta-cleavage of PrP produces two N-terminal fragments, N1 and N2, respectively, which interact specifically with negatively charged phospholipids at low pH. Our previous work probing N1 and N2 interactions with supported bilayers raised the possibility that the peptides could insert deeply with minimal disruption. In the current study we aimed to refine the binding parameters of these peptides with lipid bilayers. To this end, we used neutron reflectometry to define the structural details of this interaction in combination with quartz crystal microbalance interrogation. Neutron reflectometry confirmed that peptides equivalent to N1 and N2 insert into the interstitial space between the phospholipid headgroups but do not penetrate into the acyl tail region. In accord with our previous studies, interaction was stronger for the N1 fragment than for the N2, with more peptide bound per lipid. Neutron reflectometry analysis also detected lengthening of the lipid acyl tails, with a concurrent decrease in lipid area. This was most evident for the N1 peptide and suggests an induction of increased lipid order in the absence of phase transition. These observations stand in clear contrast to the findings of analogous studies of Ab and α-synuclein and thereby support the possibility of a functional role for such N-terminal fragment-membrane interactions.  相似文献   
103.
Inclusions of aggregated α-synuclein (α-syn) in dopaminergic neurons are a characteristic histological marker of Parkinson’s disease (PD). In vitro, α-syn in the presence of dopamine (DA) at physiological pH forms SDS-resistant non-amyloidogenic oligomers. We used a combination of biophysical techniques, including sedimentation velocity analysis, small angle X-ray scattering (SAXS) and circular dichroism spectroscopy to study the characteristics of α-syn oligomers formed in the presence of DA. Our SAXS data show that the trimers formed by the action of DA on α-syn consist of overlapping worm-like monomers, with no end-to-end associations. This lack of structure contrasts with the well-established, extensive β-sheet structure of the amyloid fibril form of the protein and its pre-fibrillar oligomers. We propose on the basis of these and earlier data that oxidation of the four methionine residues at the C- and N-terminal ends of α-syn molecules prevents their end-to-end association and stabilises oligomers formed by cross linking with DA-quinone/DA-melanin, which are formed as a result of the redox process, thus inhibiting formation of the β-sheet structure found in other pre-fibrillar forms of α-syn.  相似文献   
104.
BamA of Escherichia coli is an essential component of the hetero‐oligomeric machinery that mediates β‐barrel outer membrane protein (OMP) assembly. The C‐ and N‐termini of BamA fold into trans‐membrane β‐barrel and five soluble POTRA domains respectively. Detailed characterization of BamA POTRA 1 missense and deletion mutants revealed two competing OMP assembly pathways, one of which is followed by the archetypal trimeric β‐barrel OMPs, OmpF and LamB, and is dependent on POTRA 1. Interestingly, our data suggest that BamA also requires its POTRA 1 domain for proper assembly. The second pathway is independent of POTRA 1 and is exemplified by TolC. Site‐specific cross‐linking analysis revealed that the POTRA 1 domain of BamA interacts with SurA, a periplasmic chaperone required for the assembly of OmpF and LamB, but not that of TolC and BamA. The data suggest that SurA and BamA POTRA 1 domain function in concert to assist folding and assembly of most β‐barrel OMPs except for TolC, which folds into a unique soluble α‐helical barrel and an OM‐anchored β‐barrel. The two assembly pathways finally merge at some step beyond POTRA 1 but presumably before membrane insertion, which is thought to be catalysed by the trans‐membrane β‐barrel domain of BamA.  相似文献   
105.
Plant genotypes of Trifolium subterraneum L. (subterranean clover) were evaluated for differences in symbiotic N2 fixation with soil rhizobia, with the long-term aim of using plant selection to overcome sub-optimal N2 fixation associated with poorly effective soil rhizobia. Symbiotic performance (SP) was assessed for 49 genotypes of subterranean clover with each of four pure Rhizobium strains isolated from soil. Plants were grown in N free media in the greenhouse and their shoot dry weights measured and expressed as a percentage of dry weight with R. leguminosarm bv. trifolii WSM1325, the recommended commercial inoculant. Average SP with two Rhizobium strains (H and J) ranged from completely ineffective to 80% of potential for the subterranean clover genotypes. Two clover cultivars with high (cv. Campeda) and low (cv. Clare) SP values were investigated in more detail. Campeda typically fixed more N2 than Clare when inoculated with 30 soil extracts (4.2 vs 2.4 mg N2 fixed/shoot) and with 14 pure strains isolated from those soils (4.2 vs 2.2 mg N2 fixed/shoot). The poor performance of Clare could be attributed to interruptions at multiple stages of the symbiotic association, from nodule initiation (less nodules), nodule development (small, white nodules), through to reduced nodule function (N2 fixed/mg nodule) depending on the inoculation treatment. Through the careful use of subterranean clover genotypes by plant breeders it should be possible to make significant gains in the SP of future subterranean clover cultivars.  相似文献   
106.
The understanding of integral membrane protein (IMP) structure and function is hampered by the difficulty of handling these proteins. Aqueous solubilization, necessary for many types of biophysical analysis, generally requires a detergent to shield the large lipophilic surfaces of native IMPs. Many proteins remain difficult to study owing to a lack of suitable detergents. We introduce a class of amphiphiles, each built around a central quaternary carbon atom derived from neopentyl glycol, with hydrophilic groups derived from maltose. Representatives of this maltose-neopentyl glycol (MNG) amphiphile family show favorable behavior relative to conventional detergents, as manifested in multiple membrane protein systems, leading to enhanced structural stability and successful crystallization. MNG amphiphiles are promising tools for membrane protein science because of the ease with which they may be prepared and the facility with which their structures may be varied.  相似文献   
107.
We hypothesize that developmental exposure to noninherited maternal Ags (NIMA) results in alloantigen-specific natural and adaptive T regulatory (T(R)) cells. We compared offspring exposed to maternal H-2(d) (NIMA(d)) with nonexposed controls. In vitro assays did not reveal any differences in T cell responses pretransplant. Adoptive transfer assays revealed lower lymphoproliferation and greater cell surface TGF-beta expression on CD4(+) T cells of NIMA(d)-exposed vs control splenocytes. NIMA(d)-exposed splenocytes exhibited bystander suppression of tetanus-specific delayed-type hypersensitivity responses, which was reversed with Abs to TGF-beta and IL-10. Allospecific T effector cells were induced in all mice upon i.v. challenge with B6D2F1 splenocytes or a DBA/2 heart transplant, but were controlled in NIMA(d)-exposed mice by T(R) cells to varying degrees. Some (40%) NIMA(d)-exposed mice accepted a DBA/2 allograft while others (60%) rejected in delayed fashion. Rejector and acceptor NIMA(d)-exposed mice had reduced T effector responses and increased Foxp3(+) T(R) cells (CD4(+)CD25(+)Foxp3(+) T(R)) in spleen and lymph nodes compared with controls. The key features distinguishing NIMA(d)-exposed acceptors from all other mice were: 1) higher frequency of IL-10- and TGF-beta-producing cells primarily in the CD4(+)CD25(+) T cell subset within lymph nodes and allografts, 2) a suppressed delayed-type hypersensitivity response to B6D2F1 Ags, and 3) allografts enriched in LAP(+), Foxp3(+), and CD4(+) T cells, with few CD8(+) T cells. We conclude that the beneficial NIMA effect is due to induction of NIMA-specific T(R) cells during ontogeny. Their persistence in the adult, and the ability of the host to mobilize them to the graft, may determine whether NIMA-specific tolerance is achieved.  相似文献   
108.
Torpor during hibernation defines the nadir of mammalian metabolism where whole animal rates of metabolism are decreased to as low as 2% of basal metabolic rate. This capacity to decrease profoundly the metabolic demand of organs and tissues has the potential to translate into novel therapies for the treatment of ischemia associated with stroke, cardiac arrest or trauma where delivery of oxygen and nutrients fails to meet demand. If metabolic demand could be arrested in a regulated way, cell and tissue injury could be attenuated. Metabolic suppression achieved during hibernation is regulated, in part, by the central nervous system through indirect and possibly direct means. In this study, we review recent evidence for mechanisms of central nervous system control of torpor in hibernating rodents including evidence of a permissive, hibernation protein complex, a role for A1 adenosine receptors, mu opiate receptors, glutamate and thyrotropin-releasing hormone. Central sites for regulation of torpor include the hippocampus, hypothalamus and nuclei of the autonomic nervous system. In addition, we discuss evidence that hibernation phenotypes can be translated to non-hibernating species by H(2)S and 3-iodothyronamine with the caveat that the hypothermia, bradycardia, and metabolic suppression induced by these compounds may or may not be identical to mechanisms employed in true hibernation.  相似文献   
109.
The repeated Prisoner's Dilemma is usually known as a story of tit-for-tat (TFT). This remarkable strategy has won both of Robert Axelrod's tournaments. TFT does whatever the opponent has done in the previous round. It will cooperate if the opponent has cooperated, and it will defect if the opponent has defected. But TFT has two weaknesses: (i) it cannot correct mistakes (erroneous moves) and (ii) a population of TFT players is undermined by random drift when mutant strategies appear which play always-cooperate (ALLC). Another equally simple strategy called 'win-stay, lose-shift' (WSLS) has neither of these two disadvantages. WSLS repeats the previous move if the resulting payoff has met its aspiration level and changes otherwise. Here, we use a novel approach of stochastic evolutionary game dynamics in finite populations to study mutation-selection dynamics in the presence of erroneous moves. We compare four strategies: always-defect (ALLD), ALLC, TFT and WSLS. There are two possible outcomes: if the benefit of cooperation is below a critical value then ALLD is selected; if the benefit of cooperation is above this critical value then WSLS is selected. TFT is never selected in this evolutionary process, but lowers the selection threshold for WSLS.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号