首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   153篇
  免费   7篇
  160篇
  2015年   3篇
  2014年   6篇
  2013年   5篇
  2012年   8篇
  2011年   5篇
  2010年   15篇
  2009年   6篇
  2008年   8篇
  2007年   5篇
  2006年   3篇
  2005年   3篇
  2003年   3篇
  2002年   2篇
  2001年   2篇
  1998年   3篇
  1997年   3篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1988年   2篇
  1986年   2篇
  1985年   2篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
  1973年   6篇
  1972年   3篇
  1971年   3篇
  1969年   1篇
  1968年   1篇
  1960年   1篇
  1959年   2篇
  1958年   2篇
  1957年   2篇
  1956年   3篇
  1955年   1篇
  1954年   4篇
  1953年   1篇
  1952年   2篇
  1951年   4篇
  1950年   6篇
  1949年   2篇
  1948年   1篇
  1946年   1篇
  1944年   1篇
  1940年   1篇
  1927年   1篇
排序方式: 共有160条查询结果,搜索用时 31 毫秒
81.
IN spite of much investigation the problem of the molecular mechanism of cellulose synthesis remains unsolved1. Hexose phosphates2, sugar nucleotides3–6 and a glycolipid7–9 have been suggested as the precursor of cellulose. Implicit in all these investigations is the supposition that a single substrate suffices for the synthesis. We describe here some preliminary observations which seem to throw new light on the possible mechanism.  相似文献   
82.
The origin of Jurassic reefs: Current research developments and results   总被引:2,自引:0,他引:2  
Summary In order to elucidate the control of local, regional and global factors on occurrence, distribution and character of Jurassic reefs, reefal settings of Mid and Late Jurassic age from southwestern Germany, Iberia and Romania were compared in terms of their sedimentological (including diagenetic), palaeoecological, architectural, stratigraphic and sequential aspects. Upper Jurassic reefs of southern Germany are dominated by siliceous sponge—microbial crust automicritic to allomicritic mounds. During the Oxfordian these form small to large buildups, whereas during the Kimmeridgian they more frequently are but marginal parts of large grain-dominated massive buildups. Diagenesis of sponge facies is largely governed by the original composition and fabric of sediments. The latest Kimmeridgian and Tithonian spongiolite development is locally accompanied by coral facies, forming large reefs on spongiolitic topographic elevations or, more frequently, small meadows and patch reefs within bioclastic to oolitic shoal and apron sediments. New biostratigraphic results indicate a narrower time gap between Swabian and Franconian coral development than previously thought. Palynostratigraphy and mineralostratigraphy partly allow good stratigraphic resolution also in spongiolitic buildups, and even in dolomitised massive limestones. Spongiolite development of the Bajocian and Oxfordian of eastern Spain shares many similarities. They are both dominated by extensive biostromal development which is related to hardground formation during flooding events. The Upper Jurassic siliceous sponge facies from Portugal is more localised, though more differentiated, comprising biostromal, mudmound and sponge-thrombolite as well as frequent mixed coral-sponge facies. The Iberian Upper Jurassic coral facies includes a great variety of coral reef and platform types, a pattern which together with the analysis of coral associations reflects the great variability of reefal environments. Microbial reefs ranging from coralrich to siliceous sponge-bearing to pure thrombolites frequently developed at different water depths. Reef corals even thrived within terrigeneous settings. In eastern Romania, small coral reefs of various types as well as larger siliceous sponge-microbial crust mounds grew contemporaneously during the Oxfordian, occupying different bathymetric positions on a homoclinal ramp. Application of sequence stratigraphic concepts demonstrates that onset or, in other cases, maximum development of reef growth is related to sea level rise (transgressions and early highstand) which caused a reduction in allochthonous sedimentation. The connection of reef development with low background sedimentation is corroborated by the richness of reefs in encrusting organisms, borers and microbial crusts. Microbial crusts and other automicrites can largely contribute to the formation of reef rock during allosedimentary hiatuses. However, many reefs could cope with variable, though reduced, rates of background sedimentation. This is reflected by differences in faunal diversities and the partial dominance of morphologically adapted forms. Besides corals, some sponges and associated brachiopods show distinct morphologies reflecting sedimentation rate and substrate consistency. Bathymetry is another important factor in the determination of reefal composition. Not only a generally deeper position of siliceous sponge facies relative to coral facies, but also further bathymetric differentiation within both facies groups is reflected by changes in the composition, diversity and, partly, morphology of sponges, corals, cementing bivalves and microencrusters. Criteria such as authigenic glauconite, dysaerobic epibentic bivalves,Chondrites burrows or framboidal pyrite in the surrounding sediments of many Upper Jurassic thrombolitic buildups suggest that oxygen depletion excluded higher reefal metazoans in many of these reefs. Their position within shallowing-upwards successions and associated fauna from aerated settings show that thrombolitic reefs occurred over a broad bathymetric area, from moderately shallow to deep water. Increases in the alkalinity of sea water possibly enhanced calcification. Reefs were much more common during the Late Jurassic than during the older parts of this period. Particularly the differences between the Mid and Late Jurassic frequencies of reefs can be largely explained by a wider availability of suitable reef habitats provided by the general sea level rise, rather than by an evolutionary radiation of reef biota. The scarcity of siliceous sponge reefs on the tectonically more active southern Tethyan margin as well as in the Lusitanian Basin of west-central Portugal reflects the scarcity of suitable mid to outer ramp niches. Coral reefs occurred in a larger variety of structural settings. Upper Jurassic coral reefs partly grew in high latitudinal areas suggesting an equilibrated climate. This appears to be an effect of the buffering capacity of high sea level. These feedback effects of high sea level also may have reduced oceanic circulation particularly during flooding events of third and higher order, which gave rise to the development of black shales and dysaerobic thrombolite reefs. Hence, the interplay of local, regional and global factors caused Jurassic reefs to be more differentiated than modern ones, including near-actualistic coral reefs as well as non-actualistic sponge and microbial reefs.  相似文献   
83.
Four 7a-methyl octa(or hexa)hydrocyclopenta[d][1,3]oxazines, five 8a-methyl octa(or hexa)hydro[3,1]benzoxazines, two 6-phenyl hexahydro[3,1]benzoxazinones, and 8a-methyl hexahydro[1,3]benzoxazinone, all cis-fused, were prepared and their stereostructures studied by various one- and two-dimensional (1)H, (13)C, and (15)N NMR spectroscopic methods. In solution, the cyclopentane-fused 2-oxo derivatives and the 1,3-benzoxazinone were found to attain exclusively the N-in/O-in conformation, whereas the 6-phenyl 2-oxo/thioxo derivatives were found to be present predominantly in the N-out conformation. The C-2 unsubstituted and the 2-oxo/thioxo 7a/8a-methyl derivatives were all present in solution as a rapidly interconverting equilibrium of the N-in and N-out conformations. The C-2 methyl derivatives were each found to be interconvertable mixtures of epimers (at C-2) with the N-in conformer predominating for one epimer and the N-out conformer predominating for the other, with both predominating conformers having the C-2 methyl group equatorially orientated. The substituent on the nitrogen (H or Me) was found to be always predominantly equatorial with respect to the heteroring, except for the epimeric 2-methyl derivatives with N-out conformations where steric constraints and the generalized anomeric effect resulted in the axial orientation of the C-2 methyl being favored.  相似文献   
84.
The brook charr (Salvelinus fontinalis; Osteichthyes: Salmonidae) is a phenotypically diverse fish species inhabiting much of North America. But relatively few genetic diagnostic resources are available for this fish species. We isolated 41 microsatellites from S. fontinalis polymorphic in one or more species of salmonid fish. Thirty‐seven were polymorphic in brook charr, 15 in the congener Arctic charr (Salvelinus alpinus) and 14 in the lake charr (Salvelinus namaycush). Polymorphism was also relatively high in Oncorhynchus, where 21 loci were polymorphic in rainbow trout (Oncorhynchus mykiss) and 16 in cutthroat trout (Oncorhynchus clarkii) but only seven and four microsatellite loci were polymorphic in the more distantly related lake whitefish (Coregonus clupeaformis) and Atlantic salmon (Salmo salar), respectively. One duplicated locus (Sfo228Lav) was polymorphic at both duplicates in S. fontinalis.  相似文献   
85.
Primers for five polymorphic microsatellite loci were developed for the midget faded rattlesnake (Crotalus viridis concolor), a rare subspecies of western rattlesnake (Crotalus viridus) found only in parts of Wyoming, Colorado, and Utah. Five polymorphic microsatellites were isolated, four of which had relatively high levels of diversity (eight to nine alleles). We found only two departures from Hardy–Weinberg equilibrium and they occurred in different loci, so null alleles are likely not a problem. Moreover, we found that no two loci were linked. These loci will be applicable for population genetic analysis and perhaps analysis of paternity and mating systems.  相似文献   
86.
87.
The cranial anatomy of the plagiosaurid temnospondyl Plagiosuchus pustuliferus, from the Middle Triassic of Germany, is described in detail on the basis of a newly discovered skull and mandibular material. The highly derived skull is characterized by huge orbitotemporal fenestrae, a reduction of the circumorbital bones – the prefrontal, postfrontal and (probably) postorbital are lost – and the expansion of the jugal to occupy most of the lateral skull margin. Ventrally the extremely long subtemporal vacuities correlate with the elongate adductor fossa of the mandible. The dentition is feebly developed on both skull and mandible. Ossified ?ceratobranchials and ‘branchial denticles’ indicate the presence of open gills clefts in life. The remarkably divergent cranial morphology of P. pustuliferus highlights the extraordinary cranial diversity within the Plagiosauridae, probably unsurpassed within the Temnospondyli. Specific structural aspects of the skull – including an extremely short marginal tooth row, feeble dentition and an elongated chamber for adductor musculature – together with evidence for a hyobranchial skeleton, suggests that P. pustuliferus utilized directed suction feeding for prey capture. © 2009 The Linnean Society of London, Zoological Journal of the Linnean Society, 2009, 155 , 348–373.  相似文献   
88.
89.
Since the beginning of the 21st century, numerous studies have concluded that the plant cell nucleus is one of the cellular compartments that define the specificity of the cellular response to an external stimulus or to a specific developmental stage. To that purpose, the nucleus contains all the enzymatic machinery required to carry out a wide variety of nuclear protein post‐translational modifications (PTMs), which play an important role in signal transduction pathways leading to the modulation of specific sets of genes. PTMs include protein (de)acetylation which is controlled by the antagonistic activities of histone acetyltransferases (HATs) and histone deacetylases (HDACs). Regarding protein deacetylation, plants are of particular interest: in addition to the RPD3‐HDA1 and Sir2 HDAC families that they share with other eukaryotic organisms, plants have developed a specific family called type‐II HDACs (HD2s). Interestingly, these HD2s are well conserved in plants and control fundamental biological processes such as seed germination, flowering or the response to pathogens. The aim of this review was to summarize current knowledge regarding this fascinating, but still poorly understood nuclear protein family.  相似文献   
90.
SYNOPSIS DNA synthesis of intracellular Trypanosoma cruzi amastigotes, following the infection of bovine embryo skeletal muscle (BESM) cells, was studied by autoradiography. After penetration, there was a prereplicative lag period (∼12 h) followed by a synchronous round of DNA synthesis which was found to be independent of parasite number/BESM cell and the host cell DNA synthesis cycle. Parasite reproduction occurred, for the first time, at ∼ 21 h postinfection. It was concluded that T. cruzi trypomastigotes are in the G1/G, phase of their cell division cycle and that after penetration parasite reproduction occurs independent of events controlling host cell DNA synthesis and growth. The early synchronous growth of intracellular amastigotes should facilitate further studies on the biochemical events controlling trypomastigote-to-amastigote transformation and amastigote reproduction. A further application is envisaged for studies on the mode of action of drugs with trypanocidal activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号