The Echinococcus granulosus actin filament-fragmenting protein (EgAFFP) is a three domain member of the gelsolin family of proteins, which is antigenic to human hosts. These proteins, formed by three or six conserved domains, are involved in the dynamic rearrangements of the cytoskeleton, being responsible for severing and capping actin filaments and promoting nucleation of actin monomers. Various structures of six domain gelsolin-related proteins have been investigated, but little information on the structure of three domain members is available. In this work, the solution structure of the three domain EgAFFP has been investigated through small-angle x-ray scattering (SAXS) studies. EgAFFP exhibits an elongated molecular shape. The radius of gyration and the maximum dimension obtained by SAXS were, respectively, 2.52 +/- 0.01 nm and 8.00 +/- 1.00 nm, both in the absence and presence of Ca2+. Two different molecular homology models were built for EgAFFP, but only one was validated through SAXS studies. The predicted structure for EgAFFP consists of three repeats of a central beta-sheet sandwiched between one short and one long alpha-helix. Possible implications of the structure of EgAFFP upon actin binding are discussed. 相似文献
The genome sequence of Leifsonia xyli subsp. xyli, which causes ratoon stunting disease and affects sugarcane worldwide, was determined. The single circular chromosome of Leifsonia xyli subsp. xyli CTCB07 was 2.6 Mb in length with a GC content of 68% and 2,044 predicted open reading frames. The analysis also revealed 307 predicted pseudogenes, which is more than any bacterial plant pathogen sequenced to date. Many of these pseudogenes, if functional, would likely be involved in the degradation of plant heteropolysaccharides, uptake of free sugars, and synthesis of amino acids. Although L. xyli subsp. xyli has only been identified colonizing the xylem vessels of sugarcane, the numbers of predicted regulatory genes and sugar transporters are similar to those in free-living organisms. Some of the predicted pathogenicity genes appear to have been acquired by lateral transfer and include genes for cellulase, pectinase, wilt-inducing protein, lysozyme, and desaturase. The presence of the latter may contribute to stunting, since it is likely involved in the synthesis of abscisic acid, a hormone that arrests growth. Our findings are consistent with the nutritionally fastidious behavior exhibited by L. xyli subsp. xyli and suggest an ongoing adaptation to the restricted ecological niche it inhabits. 相似文献
This study evaluated the in vitro effect of 3.0, 6.0, and 9.0% of green banana pulp (GBP) incorporation in fermented milk on the survival of Lactobacillus paracasei subsp. paracasei LBC 81 subjected to acid stress conditions and in the presence of bile salts. Tolerance to acid stress in pH 2.0 and in the presence of 0.30% of bile salts was evaluated right after the incorporation of the fermented milk in each of these conditions, and also during 3 and 4 h of exposure, respectively. The addition of GBP (3.0%) gives a protective effect on L. paracasei LBC 81 when exposed to stress conditions evaluated, while of 9.0% there is a marked decrease of L. paracasei LBC 81. In the absence of GBP, a decrease of L. paracasei LBC 81 is observed, but lower in the presence of GBP (9.0%).
The correlation between vegetation patterns (species distribution and richness) and altitudinal variation has been widely reported for tropical forests, thereby providing theoretical basis for biodiversity conservation. However, this relationship may have been oversimplified, as many other factors may influence vegetation patterns, such as disturbances, topography and geographic distance. Considering these other factors, our primary question was: is there a vegetation pattern associated with substantial altitudinal variation (10–1,093 m a.s.l.) in the Atlantic Rainforest—a top hotspot for biodiversity conservation—and, if so, what are the main factors driving this pattern? We addressed this question by sampling 11 1-ha plots, applying multivariate methods, correlations and variance partitioning. The Restinga (forest on sandbanks along the coastal plains of Brazil) and a lowland area that was selectively logged 40 years ago were floristically isolated from the other plots. The maximum species richness (>200 spp. per hectare) occurred at approximately 350 m a.s.l. (submontane forest). Gaps, multiple stemmed trees, average elevation and the standard deviation of the slope significantly affected the vegetation pattern. Spatial proximity also influenced the vegetation pattern as a structuring environmental variable or via dispersal constraints. Our results clarify, for the first time, the key variables that drive species distribution and richness across a large altitudinal range within the Atlantic Rainforest. 相似文献
The Atlantic Forest is one of the most threatened tropical forests in the world, being drastically reduced, fragmented, and disturbed. The drastic process of anthropic occupation and exploitation of this biome has, in many cases, led to the introduction of exotic species, such as the jackfruits (Artocarpus heterophyllus). However, studies on the influence of jackfruits on the native biota are still scarce. Here we investigated the influence of fruit trees on the seed rain and early recruitment of seedlings in native remnants, comparing these patterns with those observed for a native species tapirira (Tapirira guianensis), which similarly to jackfruits, produces many fruits throughout the year, attracting a variety of frugivore species. Seed rain and seedlings observed under the jackfruits were both more abundant and equally rich to the assemblages reported under the native tapirira trees. In both species, co-specifics comprise a large part of the number of seeds (>?70%) and seedlings (>?45%) individuals and, although they attract similar seed assemblages, seedling composition diverge, particularly when co-specifics are excluded. We reported that jackfruits can attract a diverse seed and seedling assemblages, and we find no evidence that the presence of jackfruits negatively affects the arrival and initial recruitment of native plant species in the study area. These results should be analyzed with caution but considered when evaluating costs and benefits of management options to control exotic species.
Misclassification of patients as low cardiovascular risk (LCR) remains a major concern and challenges the efficacy of traditional risk markers. Due to its strong association with cholesterol acceptor capacity, high-density lipoprotein (HDL) size has been appointed as a potential risk marker. Hence, we investigate whether HDL size improves the predictive value of HDL-cholesterol in the identification of carotid atherosclerotic burden in individuals stratified to be at LCR.
Methods and Findings
284 individuals (40–75 years) classified as LCR by the current US guidelines were selected in a three-step procedure from primary care centers of the cities of Campinas and Americana, SP, Brazil. Apolipoprotein B-containing lipoproteins were precipitated by polyethylene glycol and HDL size was measured by dynamic light scattering (DLS) technique. Participants were classified in tertiles of HDL size (<7.57; 7.57–8.22; >8.22 nm). Carotid intima-media thickness (cIMT) <0.90 mm (80th percentile) was determined by high resolution ultrasonography and multivariate ordinal regression models were used to assess the association between cIMT across HDL size and levels of lipid parameters. HDL-cholesterol was not associated with cIMT. In contrast, HDL size >8.22 nm was independently associated with low cIMT in either unadjusted and adjusted models for age, gender and Homeostasis Model Assessment 2 index for insulin sensitivity, ethnicity and body mass index (Odds ratio 0.23; 95% confidence interval 0.07–0.74, p = 0.013).
Conclusion
The mean HDL size estimated with DLS constitutes a better predictor for subclinical carotid atherosclerosis than the conventional measurements of plasma HDL-cholesterol in individuals classified as LCR. 相似文献
This paper reviews the literature describing research performed over the past decade on the known and possible exposures and human health effects associated with Florida red tides. These harmful algal blooms are caused by the dinoflagellate, Karenia brevis, and similar organisms, all of which produce a suite of natural toxins known as brevetoxins. Florida red tide research has benefited from a consistently funded, long term research program, that has allowed an interdisciplinary team of researchers to focus their attention on this specific environmental issue-one that is critically important to Gulf of Mexico and other coastal communities. This long-term interdisciplinary approach has allowed the team to engage the local community, identify measures to protect public health, take emerging technologies into the field, forge advances in natural products chemistry, and develop a valuable pharmaceutical product. The Review includes a brief discussion of the Florida red tide organisms and their toxins, and then focuses on the effects of these toxins on animals and humans, including how these effects predict what we might expect to see in exposed people. 相似文献
Nitrogen (N) and water additions in the shortgrass steppe change the dominance of plant functional types (PFT) that are characterized by different photosynthetic pathways and phenologies. We aimed to examine monthly patterns of plant N and microbial N storage during the growing season, and to assess whether N fertilization last applied 30 years ago alters the timing and magnitude of N storage. We measured plant biomass and N, and microbial biomass N monthly during the growing season. We found differences in temporal patterns of plant and microbial N storage in the control plots, with microbial storage higher than plant storage in July, and the opposite trend in September. Unlike the control plots, the plots fertilized 30 years ago exhibited overlapping peaks of N storage in plants and microbes in August. Seasonal trends indicated that rainfall was an important control over plant and microbial activity at the beginning of the growing season, and that temperature limited these activities at the end of the growing season. PFT affected the amount of microbial N, which was in general higher under C3 grasses than other PFTs, independent of fertilization. Historical resource additions increased plant biomass and N, but had little effect on microbial N. These results highlight the complexity of the microbial response. Changes in climate that influence precipitation timing will affect the temporal pattern for microbial biomass N, while management practices resulting in altered plant community composition will influence the magnitude of microbial biomass N. 相似文献
Giardia is a eukaryotic protozoal parasite with unusual characteristics, such as the absence of a morphologically evident Golgi apparatus. Although both constitutive and regulated pathways for protein secretion are evident in Giardia, little is known about the mechanisms involved in vesicular docking and fusion. In higher eukaryotes, soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) of the vesicle-associated membrane protein and syntaxin families play essential roles in these processes. In this work we identified and characterized genes for 17 SNAREs in Giardia to define the minimal set of subcellular organelles present during growth and encystation, in particular the presence or not of a Golgi apparatus. Expression and localization of all Giardia SNAREs demonstrate their presence in distinct subcellular compartments, which may represent the extent of the endomembrane system in eukaryotes. Remarkably, Giardia SNAREs, homologous to Golgi SNAREs from other organisms, do not allow the detection of a typical Golgi apparatus in either proliferating or differentiating trophozoites. However, some features of the Golgi, such as the packaging and sorting function, seem to be performed by the endoplasmic reticulum and/or the nuclear envelope. Moreover, depletion of individual genes demonstrated that several SNAREs are essential for viability, whereas others are dispensable. Thus, Giardia requires a smaller number of SNAREs compared with other eukaryotes to accomplish all of the vesicle trafficking events that are critical for the growth and differentiation of this important human pathogen. 相似文献