首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7707篇
  免费   775篇
  国内免费   7篇
  8489篇
  2022年   53篇
  2021年   88篇
  2020年   61篇
  2019年   49篇
  2018年   85篇
  2017年   78篇
  2016年   142篇
  2015年   249篇
  2014年   273篇
  2013年   383篇
  2012年   456篇
  2011年   471篇
  2010年   326篇
  2009年   287篇
  2008年   439篇
  2007年   438篇
  2006年   405篇
  2005年   448篇
  2004年   435篇
  2003年   463篇
  2002年   412篇
  2001年   88篇
  2000年   96篇
  1999年   144篇
  1998年   138篇
  1997年   87篇
  1996年   93篇
  1995年   78篇
  1994年   85篇
  1993年   86篇
  1992年   101篇
  1991年   83篇
  1990年   81篇
  1989年   72篇
  1988年   66篇
  1987年   65篇
  1986年   59篇
  1985年   57篇
  1984年   77篇
  1983年   60篇
  1982年   75篇
  1981年   70篇
  1980年   86篇
  1979年   57篇
  1978年   60篇
  1977年   63篇
  1976年   52篇
  1975年   50篇
  1974年   47篇
  1973年   53篇
排序方式: 共有8489条查询结果,搜索用时 15 毫秒
101.
102.
The primitive protozoan pathogen of humans, Leishmania donovani, resides and multiplies in highly restricted micro-environments within their hosts (i.e. as promastigotes in the gut lumen of their sandfly vectors and as amastigotes in the phagolysosomal compartments of infected mammalian macrophages). Like other trypanosomatid parasites, they are purine auxotrophs (i.e. lack the ability to synthesize purines de novo) and therefore are totally dependent upon salvaging these essential nutrients from their hosts. In that context, in this study we identified a unique 35-kDa, dithiothreitol-sensitive nuclease and showed that it was constitutively released/secreted by both promastigote and amastigote developmental forms of this parasite. By using several different molecular approaches, we identified and characterized the structure of LdNuc(s), a gene that encodes this new 35-kDa class I nuclease family member in these organisms. Homologous episomal expression of an epitope-tagged LdNuc(s) chimeric construct was used in conjunction with an anti-LdNuc(s) peptide antibody to delineate the functional and biochemical properties of this unique 35-kDa parasite released/secreted enzyme. Results of coupled immunoprecipitation-enzyme activity analyses demonstrated that this "secretory" enzyme could hydrolyze a variety of synthetic polynucleotides as well as several natural nucleic acid substrates, including RNA and single- and double-stranded DNA. Based on these cumulative observations, we hypothesize that within the micro-environments of its host, this leishmanial "secretory" nuclease could function at a distance away from the parasite to harness (i.e. hydrolyze/access) host-derived nucleic acids to satisfy the essential purine requirements of these organisms. Thus, this enzyme might play an important role(s) in facilitating the survival, growth, and development of this important human pathogen.  相似文献   
103.
Five Kunitz protease inhibitor group B genes were isolated from the genome of the diploid non-tuber-forming potato species Solanum palustre. Three of five new genes share 99% identity to the published KPI-B genes from various cultivated potato accessions, while others exhibit 96% identity. Spls-KPI-B2 and Spls-KPI-B4 proteins contain unique substitutions of the most conserved residues usually involved to trypsin and chymotrypsin-specific binding sites of Kunitz-type protease inhibitor (KPI)-B, respectively. To test the inhibition of trypsin and chymotrypsin by Spls-KPI proteins, five of them were produced in E. coli purified using a Ni-sepharose resin and ion-exchange chromatography. All recombinant Spls-KPI-B inhibited trypsin; K(i) values ranged from 84.8 (Spls-KPI-B4), 345.5 (Spls-KPI-B1), and 1310.6 nM (Spls-KPI-B2) to 3883.5 (Spls-KPI-B5) and 8370 nM (Spls-KPI-B3). In addition, Spls-KPI-B1 and Spls-KPI-B4 inhibited chymotrypsin. These data suggest that regardless of substitutions of key active-center residues both Spls-KPI-B4 and Spls-KPI-B1 are functional trypsin-chymotrypsin inhibitors.  相似文献   
104.
105.
Skeletal remains of 47 individuals from the Great Salt Lake Wetlands, affiliated principally with Bear River (A.D. 400—1000) and Levee Phase (A.D. 1000—1350) Fremont cultural elements, were assessed for four mitochondrial DNA (mtDNA) markers that, in particular association, define four haplogroups (A, B, C, and D) widely shared among contemporary Amerindians groups. The most striking result is the absence of haplogroup A in this Fremont series, despite its predominance in contemporary Amerindian groups. Additionally, haplogroup B, defined by the presence of a 9bp deletion in region V, is present at the moderately high frequency of 60%. Haplogroups C and D are present at low frequencies. An additional haplotype, "N, observed in some modern populations and two other prehistoric samples, is also present in this Fremont skeletal collection. © 1996 Wiley-Liss, Inc.  相似文献   
106.
Antimicrobial resistance presents a significant health care crisis. The mutation F98Y in Staphylococcus aureus dihydrofolate reductase (SaDHFR) confers resistance to the clinically important antifolate trimethoprim (TMP). Propargyl-linked antifolates (PLAs), next generation DHFR inhibitors, are much more resilient than TMP against this F98Y variant, yet this F98Y substitution still reduces efficacy of these agents. Surprisingly, differences in the enantiomeric configuration at the stereogenic center of PLAs influence the isomeric state of the NADPH cofactor. To understand the molecular basis of F98Y-mediated resistance and how PLAs’ inhibition drives NADPH isomeric states, we used protein design algorithms in the osprey protein design software suite to analyze a comprehensive suite of structural, biophysical, biochemical, and computational data. Here, we present a model showing how F98Y SaDHFR exploits a different anomeric configuration of NADPH to evade certain PLAs’ inhibition, while other PLAs remain unaffected by this resistance mechanism.  相似文献   
107.
108.
Icosahedral double-stranded DNA (dsDNA) bacterial viruses are known to package their genomes into preformed procapsids via a unique portal vertex. Bacteriophage PRD1 differs from the more commonly known icosahedral dsDNA phages in that it contains an internal lipid membrane. The packaging of PRD1 is known to proceed via preformed empty capsids. Now, a unique vertex has been shown to exist in PRD1. We show in this study that this unique vertex extends to the virus internal membrane via two integral membrane proteins, P20 and P22. These small membrane proteins are necessary for the binding of the putative packaging ATPase P9, via another capsid protein, P6, to the virus particle.  相似文献   
109.
This paper reviews the current status of nematodes with stress-inducible transgenes as biosensors responsive to a range of external stressors, e.g., soil or water pollution, microwave radiation or immunological attack. TransgenicCaenorhabditis elegans carrying reporter genes under heat shock promoter control express reporter products only under stressful conditions. Although relatively insensitive to single metal ions, these worms respond to complex mixtures present in metal-contaminated watercourses and to laboratory mixtures containing similar constituents, but not to any of their components singly at comparable concentrations. Responses to metal mixtures are enhanced by a non-ionic surfactant, Pluronic F-127. Metals taken up by food bacteria and insoluble metal carbonates can also evoke stress responses, both in soil and aqueous media. However, high concentrations of added metals are needed to induce clear-cut responses in soil, owing to metal sorption onto clays and organic matter. Transgenic worms are also stressed by exposure to microwave radiation; pulsed signals generate responses that diminish markedly with distance from the source. Finally, stress responses are inducible by anti-epicuticle antisera and complement, suggesting that immune attack can also activite the heat shock system. The development of rapid microplate toxicity assays based on transgenic nematodes is discussed.  相似文献   
110.
The enzymatic function of succinate dehydrogenase (SDH) is dependent on covalent attachment of FAD on the ∼70-kDa flavoprotein subunit Sdh1. We show presently that flavinylation of the Sdh1 subunit of succinate dehydrogenase is dependent on a set of two spatially close C-terminal arginine residues that are distant from the FAD binding site. Mutation of Arg582 in yeast Sdh1 precludes flavinylation as well as assembly of the tetrameric enzyme complex. Mutation of Arg638 compromises SDH function only when present in combination with a Cys630 substitution. Mutations of either Arg582 or Arg638/Cys630 do not markedly destabilize the Sdh1 polypeptide; however, the steady-state level of Sdh5 is markedly attenuated in the Sdh1 mutant cells. With each mutant Sdh1, second-site Sdh1 suppressor mutations were recovered in Sdh1 permitting flavinylation, stabilization of Sdh5 and SDH tetramer assembly. SDH assembly appears to require FAD binding but not necessarily covalent FAD attachment. The Arg residues may be important not only for Sdh5 association but also in the recruitment and/or guidance of FAD and or succinate to the substrate site for the flavinylation reaction. The impaired assembly of SDH with the C-terminal Sdh1 mutants suggests that FAD binding is important to stabilize the Sdh1 conformation enabling association with Sdh2 and the membrane anchor subunits.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号