首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   107篇
  免费   10篇
  2022年   1篇
  2021年   3篇
  2020年   6篇
  2019年   5篇
  2018年   2篇
  2017年   3篇
  2016年   1篇
  2015年   6篇
  2014年   3篇
  2013年   5篇
  2012年   8篇
  2011年   2篇
  2010年   2篇
  2009年   2篇
  2008年   5篇
  2007年   3篇
  2006年   6篇
  2005年   3篇
  2004年   4篇
  2003年   4篇
  2002年   4篇
  2001年   1篇
  1997年   1篇
  1994年   2篇
  1990年   2篇
  1984年   2篇
  1982年   1篇
  1981年   1篇
  1974年   2篇
  1972年   1篇
  1971年   1篇
  1970年   2篇
  1968年   2篇
  1967年   1篇
  1966年   6篇
  1965年   3篇
  1964年   4篇
  1963年   4篇
  1962年   3篇
排序方式: 共有117条查询结果,搜索用时 500 毫秒
31.
The rapid progress in rice genotyping must be matched by advances in phenotyping. A better understanding of genetic variation in rice for drought response, root traits, and practical methods for studying them are needed. In this study, the OryzaSNP set (20 diverse genotypes that have been genotyped for SNP markers) was phenotyped in a range of field and container studies to study the diversity of rice root growth and response to drought. Of the root traits measured across more than 20 root experiments, root dry weight showed the most stable genotypic performance across studies. The environment (E) component had the strongest effect on yield and root traits. We identified genomic regions correlated with root dry weight, percent deep roots, maximum root depth, and grain yield based on a correlation analysis with the phenotypes and aus, indica, or japonica introgression regions using the SNP data. Two genomic regions were identified as hot spots in which root traits and grain yield were co-located; on chromosome 1 (39.7–40.7 Mb) and on chromosome 8 (20.3–21.9 Mb). Across experiments, the soil type/ growth medium showed more correlations with plant growth than the container dimensions. Although the correlations among studies and genetic co-location of root traits from a range of study systems points to their potential utility to represent responses in field studies, the best correlations were observed when the two setups had some similar properties. Due to the co-location of the identified genomic regions (from introgression block analysis) with QTL for a number of previously reported root and drought traits, these regions are good candidates for detailed characterization to contribute to understanding rice improvement for response to drought. This study also highlights the utility of characterizing a small set of 20 genotypes for root growth, drought response, and related genomic regions.  相似文献   
32.

Background

Protein-protein interactions are critical to elucidating the role played by individual proteins in important biological pathways. Of particular interest are hub proteins that can interact with large numbers of partners and often play essential roles in cellular control. Depending on the number of binding sites, protein hubs can be classified at a structural level as singlish-interface hubs (SIH) with one or two binding sites, or multiple-interface hubs (MIH) with three or more binding sites. In terms of kinetics, hub proteins can be classified as date hubs (i.e., interact with different partners at different times or locations) or party hubs (i.e., simultaneously interact with multiple partners).

Methodology

Our approach works in 3 phases: Phase I classifies if a protein is likely to bind with another protein. Phase II determines if a protein-binding (PB) protein is a hub. Phase III classifies PB proteins as singlish-interface versus multiple-interface hubs and date versus party hubs. At each stage, we use sequence-based predictors trained using several standard machine learning techniques.

Conclusions

Our method is able to predict whether a protein is a protein-binding protein with an accuracy of 94% and a correlation coefficient of 0.87; identify hubs from non-hubs with 100% accuracy for 30% of the data; distinguish date hubs/party hubs with 69% accuracy and area under ROC curve of 0.68; and SIH/MIH with 89% accuracy and area under ROC curve of 0.84. Because our method is based on sequence information alone, it can be used even in settings where reliable protein-protein interaction data or structures of protein-protein complexes are unavailable to obtain useful insights into the functional and evolutionary characteristics of proteins and their interactions.

Availability

We provide a web server for our three-phase approach: http://hybsvm.gdcb.iastate.edu.  相似文献   
33.
34.
The Human Phenotype Ontology (HPO) is widely used in the rare disease community for differential diagnostics, phenotype-driven analysis of next-generation sequence-variation data, and translational research, but a comparable resource has not been available for common disease. Here, we have developed a concept-recognition procedure that analyzes the frequencies of HPO disease annotations as identified in over five million PubMed abstracts by employing an iterative procedure to optimize precision and recall of the identified terms. We derived disease models for 3,145 common human diseases comprising a total of 132,006 HPO annotations. The HPO now comprises over 250,000 phenotypic annotations for over 10,000 rare and common diseases and can be used for examining the phenotypic overlap among common diseases that share risk alleles, as well as between Mendelian diseases and common diseases linked by genomic location. The annotations, as well as the HPO itself, are freely available.  相似文献   
35.
MOTIVATION: The ability to identify protein-protein interaction sites and to detect specific amino acid residues that contribute to the specificity and affinity of protein interactions has important implications for problems ranging from rational drug design to analysis of metabolic and signal transduction networks. RESULTS: We have developed a two-stage method consisting of a support vector machine (SVM) and a Bayesian classifier for predicting surface residues of a protein that participate in protein-protein interactions. This approach exploits the fact that interface residues tend to form clusters in the primary amino acid sequence. Our results show that the proposed two-stage classifier outperforms previously published sequence-based methods for predicting interface residues. We also present results obtained using the two-stage classifier on an independent test set of seven CAPRI (Critical Assessment of PRedicted Interactions) targets. The success of the predictions is validated by examining the predictions in the context of the three-dimensional structures of protein complexes.  相似文献   
36.
37.
A proteomic analysis of maize chloroplast biogenesis   总被引:10,自引:0,他引:10       下载免费PDF全文
Proteomics studies to explore global patterns of protein expression in plant and green algal systems have proliferated within the past few years. Although most of these studies have involved mapping of the proteomes of various organs, tissues, cells, or organelles, comparative proteomics experiments have also led to the identification of proteins that change in abundance in various developmental or physiological contexts. Despite the growing use of proteomics in plant studies, questions of reproducibility have not generally been addressed, nor have quantitative methods been widely used, for example, to identify protein expression classes. In this report, we use the de-etiolation ("greening") of maize (Zea mays) chloroplasts as a model system to explore these questions, and we outline a reproducible protocol to identify changes in the plastid proteome that occur during the greening process using techniques of two-dimensional gel electrophoresis and mass spectrometry. We also evaluate hierarchical and nonhierarchical statistical methods to analyze the patterns of expression of 526 "high-quality," unique spots on the two-dimensional gels. We conclude that Adaptive Resonance Theory 2-a nonhierarchical, neural clustering technique that has not been previously applied to gene expression data-is a powerful technique for discriminating protein expression classes during greening. Our experiments provide a foundation for the use of proteomics in the design of experiments to address fundamental questions in plant physiology and molecular biology.  相似文献   
38.
Plasmid vectors have been constructed for Streptococcus mutans and Bacillus subtilis that make possible rapid replacement of the widely used reporter gene lacZ (encoding beta-galactosidase) with either gfp (encoding green fluorescent protein) or gusA (encoding beta-glucuronidase). The lacZ-->gfp replacement vectors greatly facilitate the analysis of the spatial location of gene expression in biofilms of S. mutans and in sporulating B. subtilis. The lacZ-->gusA replacement vectors facilitate the comparison of two promoters within the same organism. A vector is also described that enables gusA to be replaced with gfp in B. subtilis.  相似文献   
39.

Background

Large-scale collaborative precision medicine initiatives (e.g., The Cancer Genome Atlas (TCGA)) are yielding rich multi-omics data. Integrative analyses of the resulting multi-omics data, such as somatic mutation, copy number alteration (CNA), DNA methylation, miRNA, gene expression, and protein expression, offer tantalizing possibilities for realizing the promise and potential of precision medicine in cancer prevention, diagnosis, and treatment by substantially improving our understanding of underlying mechanisms as well as the discovery of novel biomarkers for different types of cancers. However, such analyses present a number of challenges, including heterogeneity, and high-dimensionality of omics data.

Methods

We propose a novel framework for multi-omics data integration using multi-view feature selection. We introduce a novel multi-view feature selection algorithm, MRMR-mv, an adaptation of the well-known Min-Redundancy and Maximum-Relevance (MRMR) single-view feature selection algorithm to the multi-view setting.

Results

We report results of experiments using an ovarian cancer multi-omics dataset derived from the TCGA database on the task of predicting ovarian cancer survival. Our results suggest that multi-view models outperform both view-specific models (i.e., models trained and tested using a single type of omics data) and models based on two baseline data fusion methods.

Conclusions

Our results demonstrate the potential of multi-view feature selection in integrative analyses and predictive modeling from multi-omics data.
  相似文献   
40.
Mitochondrial heat shock protein 60 (Hsp60) is a nuclear encoded gene product that gets post-translationally translocated into the mitochondria. Using multiple approaches such as immunofluorescence experiments, isoelectric point analysis with two-dimensional gel electrophoresis, and mass spectrometric identification of the signal peptide, we show that Hsp60 from Plasmodium falciparum (PfHsp60) accumulates in the parasite cytoplasm during the ring, trophozoite, and schizont stages of parasite development before being imported into the parasite mitochondria. Using co-immunoprecipitation experiments with antibodies specific to cytoplasmic PfHsp90, PfHsp70-1, and PfHsp60, we show association of precursor PfHsp60 with cytoplasmic chaperone machinery. Metabolic labeling involving pulse and chase indicates translocation of the precursor pool into the parasite mitochondrion during chase. Analysis of results obtained with Geldanamycin treatment confirmed precursor PfHsp60 to be one of the clients for PfHsp90. Cytosolic chaperones bind precursor PfHsp60 prior to its import into the mitochondrion of the parasite. Our data suggests an inefficient co-ordination in the synthesis and translocation of mitochondrial PfHsp60 during asexual growth of malaria parasite in human erythrocytes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号