首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1078篇
  免费   202篇
  2022年   7篇
  2021年   15篇
  2020年   14篇
  2019年   17篇
  2018年   18篇
  2017年   19篇
  2016年   30篇
  2015年   43篇
  2014年   43篇
  2013年   75篇
  2012年   56篇
  2011年   62篇
  2010年   32篇
  2009年   31篇
  2008年   47篇
  2007年   33篇
  2006年   43篇
  2005年   41篇
  2004年   38篇
  2003年   35篇
  2002年   40篇
  2001年   25篇
  2000年   18篇
  1999年   28篇
  1998年   14篇
  1997年   15篇
  1996年   27篇
  1995年   16篇
  1994年   12篇
  1993年   15篇
  1992年   24篇
  1991年   19篇
  1990年   24篇
  1989年   27篇
  1988年   17篇
  1987年   15篇
  1986年   12篇
  1985年   19篇
  1984年   17篇
  1983年   9篇
  1982年   13篇
  1978年   6篇
  1977年   6篇
  1976年   6篇
  1975年   7篇
  1974年   8篇
  1973年   8篇
  1972年   6篇
  1971年   7篇
  1879年   6篇
排序方式: 共有1280条查询结果,搜索用时 15 毫秒
21.
22.

Site Specifics

North Carolina State University  相似文献   
23.
A new active site directed photoaffinity probe, which is a model compound for studying nucleotide diphosphate sugar binding proteins, has been synthesized by coupling 5-azido-UTP and [32P]Glc-1-P using yeast UDP-glucose pyrophosphorylase to produce [beta-32P]5-azidouridine 5'-diphosphoglucose (5N3UDP-Glc). This probe has photochemical properties similar to that of 5-azidoUTP (Evans, R. K., and Haley, B. E. (1987) Biochemistry 26, 269-276). The efficacy of 5N3UDP-Glc as an active site directed probe was demonstrated using yeast UDP-Glc pyrophosphorylase. Saturation effects of photoinsertion were observed with an apparent Kd of 51 microM and the natural substrate, UDP-Glc, prevented photoinsertion of [beta-32P]5N3UDP-Glc with an apparent Kd of 87 microM. Prevention of photoinsertion was also seen with UTP and pyrophosphate with apparent Kd values less than 200 microM. UMP, UDP, ATP, and GTP were much less effective competitors. Selective photoinsertion was observed with several partially purified enzymes including UDP-Glc dehydrogenase, UDP-Gal-4-epimerase, Gal-1-P uridyltransferase, and phosphorylase a. The absence of nonselective photoinsertion into bulk proteins was demonstrated with crude homogenates of rabbit liver as well as with several UDP-Glc binding proteins. Of the six purified enzymes tested, only phosphoglucomutase has been shown to incorporate radiolabel from the photoprobe in the absence of UV irradiation. These results and a discussion of the utility of 5N3UDP-Glc for detecting UDP-Glc binding proteins and isolating active site peptides are presented.  相似文献   
24.
The fermentative capacities of the acetogenic bacterium Peptostreptococcus productus U-1 (ATCC 35244) were examined. Although acetate was formed from all the substrates tested, additional products were produced in response to CO2 limitation. Under CO2-limited conditions, fructose-dependent growth yielded high levels of lactate as a reduced end product; lactate was also produced under CO2-enriched conditions when fructose concentrations were elevated. In the absence of supplemental CO2, xylose-dependent growth yielded lactate and succinate as major reduced end products. Although supplemental CO2 and acetogenesis stimulated cell yields on fructose, xylose-dependent cell yields were decreased in response to CO2 and acetogenesis. In contrast, glycerol-dependent growth yielded high levels of ethanol in the absence of supplemental CO2, and pyruvate was subject to only acetogenic utilization independent of CO2. CO2 pulsing during the growth of CO2-limited fructose cultures stopped lactate synthesis immediately, indicating that CO2-limited cells were nonetheless metabolically poised to respond quickly to exogenous CO2. Resting cells that were cultivated at the expense of fructose without supplemental CO2 readily consumed fructose in the absence of exogenous CO2 and formed only lactate. Although the specific activity of lactate dehydrogenase was not appreciably influenced by supplemental C02 during cultivation, cells cultivated on fructose under CO2-enriched conditions displayed minimal capacities to consume fructose in the absence of exogenous CO2. These results demonstrate that the utilization of alternative fermentations for the conservation of energy and growth of P. productus U-1 is augmented by the relative availability of CO2 and growth substrate.  相似文献   
25.
Doubling the concentration of atmospheric CO2 often inhibits plant respiration, but the mechanistic basis of this effect is unknown. We investigated the direct effects of increasing the concentration of CO2 by 360 [mu]L L-1 above ambient on O2 uptake in isolated mitochondria from soybean (Glycine max L. cv Ransom) cotyledons. Increasing the CO2 concentration inhibited the oxidation of succinate, external NADH, and succinate and external NADH combined. The inhibition was greater when mitochondria were preincubated for 10 min in the presence of the elevated CO2 concentration prior to the measurement of O2 uptake. Elevated CO2 concentration inhibited the salicylhydroxamic acid-resistant cytochrome pathway, but had no direct effect on the cyanide-resistant alternative pathway. We also investigated the direct effects of elevated CO2 concentration on the activities of cytochrome c oxidase and succinate dehydrogenase (SDH) and found that the activity of both enzymes was inhibited. The kinetics of inhibition of cytochrome c oxidase were time-dependent. The level of SDH inhibition depended on the concentration of succinate in the reaction mixture. Direct inhibition of respiration by elevated CO2 in plants and intact tissues may be due at least in part to the inhibition of cytochrome c oxidase and SDH.  相似文献   
26.
Summary Continuing a line of investigations on methods for formation and growth of high-quality crystals of peptides, the glycylglycine sequence has been crystallized by evaporation methods as a salt with 1,5-naphthalenedisulfonic acid. The structure of the peptide is highly extended, and is conformationally quite similar to the structures which have been characterized for other zwitterionic and salt forms of this sequence. Thus, crystallization as a salt with this sulfonic acid has imposed no undue influence upon the molecular conformation. These results offer further indication that the preparation of peptide sulfonate salts, particularly with arene templates, may have broad general utility for crystallization of interesting sequences which until now have not been approachable in their zwitterionic forms.  相似文献   
27.
Li L  Drake RR  Clement S  Brown RM 《Plant physiology》1993,101(4):1149-1156
Using differential product entrapment and photolabeling under specifying conditions, we identifIed a 37-kD polypeptide as the best candidate among the UDP-glucose-binding polypeptides for the catalytic subunit of cotton (Gossypium hirsutum) cellulose synthase. This polypeptide is enriched by entrapment under conditions favoring [beta]-1,4-glucan synthesis, and it is magnesium dependent and sensitive to unlabeled UDP-glucose. A 52-kD polypeptide was identified as the most likely candidate for the catalytic subunit of [beta]-1,3-glucan synthase because this polypeptide is the most abundant protein in the entrapment fraction obtained under conditions favoring [beta]-1,3-glucan synthesis, is coincident with [beta]-1,3-glucan synthase activity, and is calcium dependent. The possible involvement of other polypeptides in the synthesis of [beta]-1,3-glucan is discussed.  相似文献   
28.
Arp  W. J.  Drake  B. G.  Pockman  W. T.  Curtis  P. S.  Whigham  D. F. 《Plant Ecology》1993,(1):133-143
Elevated atmospheric CO2 is known to stimulate photosynthesis and growth of plants with the C3 pathway but less of plants with the C4 pathway. An increase in the CO2 concentration can therefore be expected to change the competitive interactions between C3 and C4 species. The effect of long term exposure to elevated CO2 (ambient CO2 concentration +340 µmol CO2 mol-1) on a salt marsh vegetation with both C3 and C4 species was investigated. Elevated CO2 increased the biomass of the C3 sedgeScirpus olneyi growing in a pure stand, while the biomass of the C4 grassSpartina patens in a monospecific community was not affected. In the mixed C3/C4 community the C3 sedge showed a very large relative increase in biomass in elevated CO2 while the biomass of the C4 species declined.The C4 grassSpartina patens dominated the higher areas of the salt marsh, while the C3 sedgeScirpus olneyi was most abundant at the lower elevations, and the mixed community occupied intermediate elevations.Scirpus growth may have been restricted by drought and salt stress at the higher elevations, whileSpartina growth at the lower elevations may be affected by the higher frequency of flooding. Elevated CO2 may affect the species distribution in the salt marsh if it allowsScirpus to grow at higher elevations where it in turn may affect the growth ofSpartina.  相似文献   
29.
30.
Elevated atmospheric carbon dioxide (Ca) usually reduces stomatal conductance, but the effects on plant transpiration in the field are not well understood. Using constant‐power sap flow gauges, we measured transpiration from Quercus myrtifolia Willd., the dominant species of the Florida scrub‐oak ecosystem, which had been exposed in situ to elevated Ca (350 µmol mol ? 1 above ambient) in open‐top chambers since May 1996. Elevated Ca reduced average transpiration per unit leaf area by 37%, 48% and 49% in March, May and October 2000, respectively. Temporarily reversing the Ca treatments showed that at least part of the reduction in transpiration was an immediate, reversible response to elevated Ca. However, there was also an apparent indirect effect of Ca on transpiration: when transpiration in all plants was measured under common Ca, transpiration in elevated Ca‐grown plants was lower than that in plants grown in normal ambient Ca. Results from measurements of stomatal conductance (gs), leaf area index (LAI), canopy light interception and correlation between light and gs indicated that the direct, reversible Ca effect on transpiration was due to changes in gs caused by Ca, and the indirect effect was caused mainly by greater self‐shading resulting from enhanced LAI, not from stomatal acclimation. By reducing light penetration through the canopy, the enhanced self‐shading at elevated Ca decreased stomatal conductance and transpiration of leaves at the middle and bottom of canopy. This self‐shading mechanism is likely to be important in ecosystems where LAI increases in response to elevated Ca.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号