首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1002篇
  免费   188篇
  国内免费   2篇
  1192篇
  2022年   11篇
  2021年   15篇
  2020年   14篇
  2019年   17篇
  2018年   19篇
  2017年   20篇
  2016年   29篇
  2015年   43篇
  2014年   44篇
  2013年   51篇
  2012年   58篇
  2011年   57篇
  2010年   33篇
  2009年   31篇
  2008年   46篇
  2007年   32篇
  2006年   44篇
  2005年   34篇
  2004年   36篇
  2003年   38篇
  2002年   38篇
  2001年   25篇
  2000年   19篇
  1999年   27篇
  1998年   12篇
  1997年   14篇
  1996年   28篇
  1995年   17篇
  1994年   11篇
  1993年   15篇
  1992年   22篇
  1991年   19篇
  1990年   24篇
  1989年   25篇
  1988年   17篇
  1987年   14篇
  1986年   11篇
  1985年   18篇
  1984年   17篇
  1983年   9篇
  1982年   12篇
  1977年   6篇
  1976年   6篇
  1975年   5篇
  1974年   8篇
  1973年   8篇
  1972年   6篇
  1971年   6篇
  1970年   5篇
  1966年   5篇
排序方式: 共有1192条查询结果,搜索用时 0 毫秒
31.
In this paper we describe the engineering and regeneration of transgenic tobacco plants expressing a recombinant plasma membrane-retained antibody specific to microcystin-LR (MC-LR), the environmental toxin pollutant produced by cyanobacteria. The antibody was created by a genetic fusion of the antigen binding regions of the microcystin-specific single chain antibody, 3A8, with the constant regions from the murine IgG1κ, Guy’s 13, including a membrane retention sequence at the C-terminal end of the antibody heavy chain. The antibody produced in the leaves was shown to be functional by binding to MC-LR in an ELISA with antibody yields in transgenic plant leaves reaching a maximum of 1.2 μg g−1 leaf f.wt (0.005% total soluble protein). Antibody-MC-LR complexes formed in leaves after addition of MC-LR to hydroponic medium around the roots of transgenic plant cultures.  相似文献   
32.
Why Is Golden Rice Golden (Yellow) Instead of Red?   总被引:6,自引:0,他引:6       下载免费PDF全文
The endosperm of Golden Rice (Oryza sativa) is yellow due to the accumulation of beta-carotene (provitamin A) and xanthophylls. The product of the two carotenoid biosynthesis transgenes used in Golden Rice, phytoene synthase (PSY) and the bacterial carotene desaturase (CRTI), is lycopene, which has a red color. The absence of lycopene in Golden Rice shows that the pathway proceeds beyond the transgenic end point and thus that the endogenous pathway must also be acting. By using TaqMan real-time PCR, we show in wild-type rice endosperm the mRNA expression of the relevant carotenoid biosynthetic enzymes encoding phytoene desaturase, zeta-carotene desaturase, carotene cis-trans-isomerase, beta-lycopene cyclase, and beta-carotene hydroxylase; only PSY mRNA was virtually absent. We show that the transgenic phenotype is not due to up-regulation of expression of the endogenous rice pathway in response to the transgenes, as was suggested to be the case in tomato (Lycopersicon esculentum) fruit, where CRTI expression resulted in a similar carotenoid phenomenon. This means that beta-carotene and xanthophyll formation in Golden Rice relies on the activity of constitutively expressed intrinsic rice genes (carotene cis-trans-isomerase, alpha/beta-lycopene cyclase, beta-carotene hydroxylase). PSY needs to be supplemented and the need for the CrtI transgene in Golden Rice is presumably due to insufficient activity of the phytoene desaturase and/or zeta-carotene desaturase enzyme in endosperm. The effect of CRTI expression was also investigated in leaves of transgenic rice and Arabidopsis (Arabidopsis thaliana). Here, again, the mRNA levels of intrinsic carotenogenic enzymes remained unaffected; nevertheless, the carotenoid pattern changed, showing a decrease in lutein, while the beta-carotene-derived xanthophylls increased. This shift correlated with CRTI-expression and is most likely governed at the enzyme level by lycopene-cis-trans-isomerism. Possible implications are discussed.  相似文献   
33.
We report changes in nitrogen cycling in Florida scrub oak in response to elevated atmospheric CO2 during the first 14 months of experimental treatment. Elevated CO2 stimulated above-ground growth, nitrogen mass, and root nodule production of the nitrogen-fixing vine, Galactia elliottii Nuttall. During this period, elevated CO2 reduced rates of gross nitrogen mineralization in soil, and resulted in lower recovery of nitrate on resin lysimeters. Elevated CO2 did not alter nitrogen in the soil microbial biomass, but increased the specific rate of ammonium immobilization (NH4+ immobilized per unit microbial N) measured over a 24-h period. Increased carbon input to soil through greater root growth combined with a decrease in the quality of that carbon in elevated CO2 best explains these changes. These results demonstrate that atmospheric CO2 concentration influences both the internal cycling of nitrogen (mineralization, immobilization, and nitrification) as well as the processes that regulate total ecosystem nitrogen mass (nitrogen fixation and nitrate leaching) in Florida coastal scrub oak. If these changes in nitrogen cycling are sustained, they could cause long-term feedbacks to the growth responses of plants to elevated CO2. Greater nitrogen fixation and reduced leaching could stimulate nitrogen-limited plant growth by increasing the mass of labile nitrogen in the ecosystem. By contrast, reduced nitrogen mineralization and increased immobilization will restrict the supply rate of plant-available nitrogen, potentially reducing plant growth. Thus, the net feedback to plant growth will depend on the balance of these effects through time.  相似文献   
34.
Inflammation and altered immunity are recognized components of severe pulmonary arterial hypertension in human patients and in animal models of PAH. While eicosanoid metabolites of cyclooxygenase and lipoxygenase pathways have been identified in the lungs from pulmonary hypertensive animals their role in the pathogenesis of severe angioobliterative PAH has not been examined. Here we investigated whether a cyclooxygenase-2 (COX-2) inhibitor or diethylcarbamazine (DEC), that is known for its 5-lipoxygenase inhibiting and antioxidant actions, modify the development of PAH in the Sugen 5416/hypoxia (SuHx) rat model. The COX-2 inhibitor SC-58125 had little effect on the right ventricular pressure and did not prevent the development of pulmonary angioobliteration. In contrast, DEC blunted the muscularization of pulmonary arterioles and reduced the number of fully obliterated lung vessels. DEC treatment of SuHx rats, after the lung vascular disease had been established, reduced the degree of PAH, the number of obliterated arterioles and the degree of perivascular inflammation. We conclude that the non-specific anti-inflammatory drug DEC affects developing PAH and is partially effective once angioobliterative PAH has been established.  相似文献   
35.
Melanotransferrin (MTf) is a member of the transferrin (Tf) family of iron (Fe)-binding proteins that was first identified as a cell-surface marker of melanoma. Although MTf has a high-affinity Fe-binding site that is practically identical to that of serum Tf, the protein does not play an essential role in Fe homeostasis and its precise molecular function remains unclear. A Zn(II)-binding motif, distinct from the Fe-binding site, has been proposed in human MTf based on computer modelling studies. However, little is known concerning the interaction of its proposed binding site(s) with metals and the consequences in terms of MTf conformation. For the first time, biochemical and spectroscopic techniques have been used in this study to characterise metal ion-binding to recombinant MTf. Initially, the binding of Fe to MTf was examined using 6M urea gel electrophoresis. Although four different iron-loaded forms were observed with serum Tf, only two forms were found with MTf, the apo-form and the N-monoferric holo-protein, suggesting a single high-affinity site. The presence of a single Fe(III)-binding site was also supported by EPR results which indicated that the Fe(III)-binding characteristics of MTf were unique, but somewhat comparable to the N-lobes of human serum Tf and chicken ovo-Tf. Circular dichroism (CD) analysis indicated that, as for Tf, no changes in secondary structure could be observed upon Fe(III)-binding. The ability of MTf to bind Zn(II) was also investigated using CD which demonstrated that the single high-affinity Fe-binding site was distinct from a potential Zn(II)-binding site.  相似文献   
36.
Elevated atmospheric carbon dioxide (Ca) usually reduces stomatal conductance, but the effects on plant transpiration in the field are not well understood. Using constant‐power sap flow gauges, we measured transpiration from Quercus myrtifolia Willd., the dominant species of the Florida scrub‐oak ecosystem, which had been exposed in situ to elevated Ca (350 µmol mol ? 1 above ambient) in open‐top chambers since May 1996. Elevated Ca reduced average transpiration per unit leaf area by 37%, 48% and 49% in March, May and October 2000, respectively. Temporarily reversing the Ca treatments showed that at least part of the reduction in transpiration was an immediate, reversible response to elevated Ca. However, there was also an apparent indirect effect of Ca on transpiration: when transpiration in all plants was measured under common Ca, transpiration in elevated Ca‐grown plants was lower than that in plants grown in normal ambient Ca. Results from measurements of stomatal conductance (gs), leaf area index (LAI), canopy light interception and correlation between light and gs indicated that the direct, reversible Ca effect on transpiration was due to changes in gs caused by Ca, and the indirect effect was caused mainly by greater self‐shading resulting from enhanced LAI, not from stomatal acclimation. By reducing light penetration through the canopy, the enhanced self‐shading at elevated Ca decreased stomatal conductance and transpiration of leaves at the middle and bottom of canopy. This self‐shading mechanism is likely to be important in ecosystems where LAI increases in response to elevated Ca.  相似文献   
37.
38.
B and T lymphocyte attenuator (BTLA) was initially identified as expressed on Th1 cells and B cells, but recently reported to be expressed by macrophages, dendritic cells, and NK cells as well. To address this discrepancy we generated a panel of BTLA-specific mAbs and characterized BTLA expression under various activation conditions. We report the existence of three distinct BTLA alleles among 23 murine strains, differing both in Ig domain structure and cellular distribution of expression on lymphoid subsets. The BALB/c and MRL/lpr alleles differ at one amino acid residue, but C57BL/6 has nine additional differences and alters the predicted cysteine bonding pattern. The BALB/c BTLA allele is also expressed by B cells, T cells, and dendritic cells, but not macrophages or NK cells. However, C57BL/6 BTLA is expressed on CD11b+ macrophages and NK cells. Finally, in CD4+ T cells, BTLA is expressed most highly following Ag-specific induction of anergy in vivo, and unlike programmed death-1 and CTLA-4, not expressed by CD25+ regulatory T cells. These results clarify discrepancies regarding BTLA expression, suggest that structural and expression polymorphisms be considered when analyzing BTLA in various murine backgrounds, and indicate a possible role in anergic CD4+ T cells.  相似文献   
39.
A new active site directed photoaffinity probe, which is a model compound for studying nucleotide diphosphate sugar binding proteins, has been synthesized by coupling 5-azido-UTP and [32P]Glc-1-P using yeast UDP-glucose pyrophosphorylase to produce [beta-32P]5-azidouridine 5'-diphosphoglucose (5N3UDP-Glc). This probe has photochemical properties similar to that of 5-azidoUTP (Evans, R. K., and Haley, B. E. (1987) Biochemistry 26, 269-276). The efficacy of 5N3UDP-Glc as an active site directed probe was demonstrated using yeast UDP-Glc pyrophosphorylase. Saturation effects of photoinsertion were observed with an apparent Kd of 51 microM and the natural substrate, UDP-Glc, prevented photoinsertion of [beta-32P]5N3UDP-Glc with an apparent Kd of 87 microM. Prevention of photoinsertion was also seen with UTP and pyrophosphate with apparent Kd values less than 200 microM. UMP, UDP, ATP, and GTP were much less effective competitors. Selective photoinsertion was observed with several partially purified enzymes including UDP-Glc dehydrogenase, UDP-Gal-4-epimerase, Gal-1-P uridyltransferase, and phosphorylase a. The absence of nonselective photoinsertion into bulk proteins was demonstrated with crude homogenates of rabbit liver as well as with several UDP-Glc binding proteins. Of the six purified enzymes tested, only phosphoglucomutase has been shown to incorporate radiolabel from the photoprobe in the absence of UV irradiation. These results and a discussion of the utility of 5N3UDP-Glc for detecting UDP-Glc binding proteins and isolating active site peptides are presented.  相似文献   
40.
Intrastriatal administration of the succinate dehydrogenase (SDH) inhibitor malonate produces neuronal injury by a "secondary excitotoxic" mechanism involving the generation of reactive oxygen species (ROS). Recent evidence indicates dopamine may contribute to malonate-induced striatal neurodegeneration; infusion of malonate causes a pronounced increase in extracellular dopamine and dopamine deafferentation attenuates malonate toxicity. Inhibition of the catabolic enzyme monoamine oxidase (MAO) also attenuates striatal lesions induced by malonate. In addition to forming 3,4-dihydroxyphenylacetic acid, metabolism of dopamine by MAO generates H2O2, suggesting that dopamine metabolism may be a source of ROS in malonate toxicity. There are two isoforms of MAO, MAO-A and MAO-B. In this study, we have investigated the role of each isozyme in malonate-induced striatal injury using both pharmacological and genetic approaches. In rats treated with either of the specific MAO-A or -B inhibitors, clorgyline or deprenyl, respectively, malonate lesion volumes were reduced by 30% compared to controls. In knock-out mice lacking the MAO-A isoform, malonate-induced lesions were reduced by 50% and protein carbonyls, an index ROS formation, were reduced by 11%, compared to wild-type animals. In contrast, mice deficient in MAO-B showed highly variable susceptibility to malonate toxicity precluding us from determining the precise role of MAO-B in this form of brain damage. These findings indicate that normal levels of MAO-A participate in expression of malonate toxicity by a mechanism involving oxidative stress.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号