首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   8篇
  56篇
  2019年   2篇
  2018年   2篇
  2017年   4篇
  2016年   9篇
  2015年   8篇
  2014年   4篇
  2013年   3篇
  2012年   4篇
  2010年   2篇
  2008年   5篇
  2007年   5篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2000年   1篇
  1996年   1篇
  1979年   1篇
排序方式: 共有56条查询结果,搜索用时 11 毫秒
11.
An ecosystem is generally sustained by a set of integrated physical elements forming a functional landscape unit—ecotope, which supplies nutrients, microclimate, and exchanges matter and energy with the wider environment. To better predict environmental change effects on ecosystems, particularly in critically sensitive regions such as high altitudes, it is imperative to recognise how their natural landscape heterogeneity works at different scales to shape habitats and sustain biotic communities prior to major changes. We conducted a comprehensive survey of catchment physical, geological and ecological properties of 380 high-altitude lakes and ponds in the axial Pyrenees at a variety of scales, to formulate and test an integrated model encompassing major flows and interactions that drive lake ecosystems. Three composite drivers encompassed most of the variability in lake catchment characteristics. In order of total percentage of variance explained, they were (i) hydrology/hydrodynamics—responsible for type and discharge of inlets/outlets, and for waterbody size; (ii) bedrock geomorphology, summarising geology, slope and fractal order—all dictating vegetation cover of catchment slope and lake shore, and the presence of aquatic vegetation; and (iii) topography, that is, catchment formation type—driving lakes connectivity, and the presence of summer snow deposits. Although driver (i) appeared to be local, (ii) and (iii) showed gradient changes along altitude and latitude. These three drivers differentiated several lake ecotopes based on their landscape similarities. The three-driver model was successfully tested on a riparian vegetation composition dataset, further illustrating the validity and fundamental nature of the concept. The findings inform on the relative contribution of scale-dependent catchment physical elements to lake ecotope and ecosystem formation in high-altitude lakes, which should be considered in any assessment of potentially major deleterious effects due to environmental/climate change.  相似文献   
12.
Patients with diabetes mellitus have an increased risk of myocardial infarction and coronary artery disease‐related death, exhibiting highly vulnerable plaques. Many studies have highlighted the major role of macrophages (MAC) and smooth muscle cells (SMC) and the essential part of metalloproteases (MMPs) in atherosclerotic plaque vulnerability. We hypothesize that in diabetes, the interplay between MAC and SMC in high glucose conditions may modify the expression of MMPs involved in plaque vulnerability. The SMC‐MAC cross‐talk was achieved using trans‐well chambers, where human SMC were grown at the bottom and human MAC in the upper chamber in normal (NG) or high (HG) glucose concentration. After cross‐talk, the conditioned media and cells were isolated and investigated for the expression of MMPs, MCP‐1 and signalling molecules. We found that upon cross‐talk with MAC in HG, SMC exhibit: (i) augmented expression of MMP‐1 and MMP‐9; (ii) significant increase in the enzymatic activity of MMP‐9; (iii) higher levels of soluble MCP‐1 chemokine which is functionally active and involved in MMPs up‐regulation; (iv) activated PKCα signalling pathway which, together with NF‐kB are responsible for MMP‐1 and MMP‐9 up‐regulation, and (v) impaired function of collagen assembly. Taken together, our data indicate that MCP‐1 released by cell cross‐talk in diabetic conditions binds to CCR2 and triggers MMP‐1 and MMP‐9 over‐expression and activity, features that could explain the high vulnerability of atherosclerotic plaque found at diabetic patients.  相似文献   
13.
The recently identified Cystine-knot containing AMPAR-associated protein (Ckamp44) represents a novel AMPAR-related protein that critically controls AMPAR-mediated currents and short-term plasticity. However, the effects of the lack of this protein at network level are not entirely understood. Here we used c-Fos brain mapping to analyse whether the excitatory/inhibitory balance is altered in the absence of the Ckamp44. We found that Ckamp44?/? mice treated with an NMDAR antagonist exhibited a very robust c-Fos expression pattern, similar with that seen in mice lacking the GluN2A subunit of NMDAR treated with the same compound. This finding is unexpected, in particular, since Ckamp44 expression is strongest in dentate gyrus granule cells and less abundant in the rest of the brain.  相似文献   
14.
15.
Telocytes (TCs) are new cellular entities of mesenchymal origin described almost ubiquitously in human and mammalian organs ( www.telocytes.com ). Different subtypes of TCs were described, all forming networks in the interstitial space by homo‐ and heterocellular junctions. Previous studies analysed the gene expression profiles of chromosomes 1, 2, 3, 17 and 18 of murine pulmonary TCs. In this study, we analysed by bioinformatics tools the gene expression profiles of chromosome 4 for murine pulmonary TCs and compared it with mesenchymal stem cells (MSCs), fibroblasts (Fbs), alveolar type II cells (ATII), airway basal cells, proximal airway cells, CD8(+) T cells from bronchial lymph nodes (T‐BL) and CD8(+) T cells from lungs (T‐L). Key functional genes were identified with the aid of the reference library of the National Center for Biotechnology Information Gene Expression Omnibus database. Seventeen genes were up‐regulated and 56 genes were down‐regulated in chromosome 4 of TCs compared with other cells. Four genes (Akap2, Gpr153, Sdc3 and Tbc1d2) were up‐regulated between one and fourfold and one gene, Svep1, was overexpressed over fourfold. The main functional networks were identified and analysed, pointing out to a TCs involvement in cellular signalling, regulation of tissue inflammation and cell expansion and movement.  相似文献   
16.
Enzyme inhibition studies on phosphatidylinositol-specific phospholipase C (PI-PLC) from B. Cereus were performed in order to gain an understanding of the mechanism of the PI-PLC family of enzymes and to aid inhibitor design. Inhibition studies on two synthetic cyclic phosphonate analogues (1,2) of inositol cyclic-1:2-monophosphate (cIP), glycerol-2-phosphate and vanadate were performed using natural phosphatidylinositol (PI) substrate in Triton X100 co-micelles and an NMR assay. Further inhibition studies on PI-PLC from B. Cereus were performed using a chromogenic, synthetic PI analogue (DPG-PI), an HPLC assay and Aerosol-OT (AOT), phytic acid and vanadate as inhibitors. For purposes of comparison, a model PI-PLC enzyme system was developed employing a synthetic Cu(II)-metallomicelle and a further synthetic PI analogue (IPP-PI). The studies employing natural PI substrate in Triton X100 co-micelles and synthetic DPG-PI in the absence of surfactant indicate three classes of PI-PLC inhibitors: (1) active-site directed inhibitors (e.g. 1,2); (2) water-soluble polyanions (e.g. tetravanadate, phytic acid); (3) surfactant anions (e.g. AOT). Three modes of molecular recognition are indicated to be important: (1) active site molecular recognition; (2) recognition at an anion-recognition site which may be the active site, and; (3) interfacial (or hydrophobic) recognition which may be exploited to increase affinity for the anion-recognition site in anionic surfactants such as AOT. The most potent inhibition of PI-PLC was observed by tetravanadate and AOT. The metallomicelle model system was observed to mimic PI-PLC in reproducing transesterification of the PI analogue substrate to yield cIP as product and in showing inhibition by phytic acid and AOT.  相似文献   
17.
The Tg737°rpk autosomal recessive polycystic kidney disease (ARPKD) mouse carries a hypomorphic mutation in the Tg737 gene. Because of the absence of its protein product Polaris, the nonmotile primary monocilium central to the luminal membrane of ductal epithelia, such as the cortical collecting duct (CCD) principal cell (PC), is malformed. Although the functions of the renal monocilium remain elusive, primary monocilia or flagella on neurons act as sensory organelles. Thus we hypothesized that the PC monocilium functions as a cellular sensor. To test this hypothesis, we assessed the contribution of Polaris and cilium structure and function to renal epithelial ion transport electrophysiology. Properties of Tg737°rpk mutant CCD PC clones were compared with clones genetically rescued with wild-type Tg737 cDNA. All cells were grown as polarized cell monolayers with similarly high transepithelial resistance on permeable filter supports. Three- to fourfold elevated transepithelial voltage (Vte) and short-circuit current (Isc) were measured in mutant orpk monolayers vs. rescued controls. Pharmacological and cell biological examination of this enhanced electrical end point in mutant monolayers revealed that epithelial Na+ channels (ENaCs) were upregulated. Amiloride, ENaC-selective amiloride analogs (benzamil and phenamil), and protease inhibitors (aprotinin and leupeptin) attenuated heightened Vte and Isc. Higher concentrations of additional amiloride analogs (ethylisopropylamiloride and dimethylamiloride) also revealed inhibition of Vte. Cell culture requirements and manipulations were also consistent with heightened ENaC expression and function. Together, these data suggest that ENaC expression and/or function are upregulated in the luminal membrane of mutant, cilium-deficient orpk CCD PC monolayers vs. cilium-competent controls. When the genetic lesion causes loss or malformation of the monocilium, ENaC-driven Na+ hyperabsorption may explain the rapid emergence of severe hypertension in a majority of patients with ARPKD. cilia; hypertension; ion transport; epithelial cells  相似文献   
18.
Manganese is one of the most abundant metal in natural environments and serves as an essential microelement for all living systems. However, the enrichment of soil with manganese resulting from industrial inputs may threaten terrestrial ecosystems. Several studies have demonstrated harmful effects of manganese exposure by cutaneous contact and/or by soil ingestion to a wide range of soil invertebrates. The link between soil manganese and land snails has never been made although these invertebrates routinely come in contact with the upper soil horizons through cutaneous contact, egg-laying, and feeding activities in soil. Therefore, we have investigated the direct transfer of manganese from soils to snails and assessed its toxicity at background concentrations in the soil. Juvenile Cantareus aspersus snails were caged under semi-field conditions and exposed first, for a period of 30 days, to a series of soil manganese concentrations, and then, for a second period of 30 days, to soils with higher manganese concentrations. Manganese levels were measured in the snail hepatopancreas, foot, and shell. The snail survival and shell growth were used to assess the lethal and sublethal effects of manganese exposure. The transfer of manganese from soil to snails occurred independently of food ingestion, but had no consistent effect on either the snail survival or shell growth. The hepatopancreas was the best biomarker of manganese exposure, whereas the shell did not serve as a long-term sink for this metal. The kinetics of manganese retention in the hepatopancreas of snails previously exposed to manganese-spiked soils was significantly influenced by a new exposure event. The results of this study reveal the importance of land snails for manganese cycling in terrestrial biotopes and suggest that the direct transfer from soils to snails should be considered when precisely assessing the impact of anthropogenic Mn releases on soil ecosystems.  相似文献   
19.
Fetal cells enter maternal circulation during pregnancy and persist in the woman’s body for decades, achieving a form of physiological microchimerism. These cells were also evidenced in tumors. We investigated the frequency and concentration of fetal microchimerism in the local breast cancer environment. From 19 patients with confirmed breast neoplasia, after breast surgical resection, we collected three fresh specimens from the tumor core, breast tissue at tumor periphery, and adjacent normal breast tissue. The presence of male DNA was analyzed with a quantitative PCR assay for the sex determining region gene (SRY) gene. In the group of women who had given birth to at least one son, we detected fetal microchimerism in 100% of samples from tumors and their periphery and in 64% (9 of 14) of those from normal breast tissue. The tissues from the tumor and its periphery carry a significantly increased number of SRY copies compared to its neighboring common breast tissue (p = 0.005). The median of the normalized SRY-signal was about 77 (range, 3.2–21467) and 14-fold (range, 1.3–2690) greater in the tumor and respectively in the periphery than in the normal breast tissue. In addition, the relative expression of the SRY gene had a median 5.5 times larger in the tumor than in its periphery (range, 1.1–389.4). We found a heterogeneous distribution of fetal microchimerism in breast cancer environment. In women with sons, breast neoplasia harbors male cells at significantly higher levels than in peripheral and normal breast tissue.  相似文献   
20.
Understanding local adaptation in forest trees is currently a key research and societal priority. Geographically and ecologically marginal populations provide ideal case studies, because environmental stress along with reduced gene flow can facilitate the establishment of locally adapted populations. We sampled European silver fir (Abies alba Mill.) trees in the French Mediterranean Alps, along the margin of its distribution range, from pairs of high‐ and low‐elevation plots on four different mountains situated along a 170‐km east–west transect. The analysis of 267 SNP loci from 175 candidate genes suggested a neutral pattern of east–west isolation by distance among mountain sites. FST outlier tests revealed 16 SNPs that showed patterns of divergent selection. Plot climate was characterized using both in situ measurements and gridded data that revealed marked differences between and within mountains with different trends depending on the season. Association between allelic frequencies and bioclimatic variables revealed eight genes that contained candidate SNPs, of which two were also detected using FST outlier methods. All SNPs were associated with winter drought, and one of them showed strong evidence of selection with respect to elevation. QSTFST tests for fitness‐related traits measured in a common garden suggested adaptive divergence for the date of bud flush and for growth rate. Overall, our results suggest a complex adaptive picture for A. alba in the southern French Alps where, during the east‐to‐west Holocene recolonization, locally advantageous genetic variants established at both the landscape and local scales.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号