首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1890篇
  免费   145篇
  2023年   7篇
  2022年   20篇
  2021年   61篇
  2020年   29篇
  2019年   30篇
  2018年   38篇
  2017年   38篇
  2016年   59篇
  2015年   114篇
  2014年   140篇
  2013年   165篇
  2012年   173篇
  2011年   153篇
  2010年   100篇
  2009年   90篇
  2008年   109篇
  2007年   133篇
  2006年   111篇
  2005年   86篇
  2004年   79篇
  2003年   92篇
  2002年   73篇
  2001年   5篇
  2000年   9篇
  1999年   11篇
  1998年   17篇
  1997年   10篇
  1996年   11篇
  1995年   7篇
  1994年   5篇
  1993年   8篇
  1992年   3篇
  1991年   4篇
  1990年   5篇
  1989年   3篇
  1988年   2篇
  1987年   6篇
  1986年   4篇
  1985年   6篇
  1983年   2篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1975年   1篇
  1974年   3篇
  1973年   2篇
  1953年   1篇
  1929年   1篇
  1927年   1篇
排序方式: 共有2035条查询结果,搜索用时 31 毫秒
131.
132.
RasGRPs (guanine-nucleotide-releasing proteins) are exchange factors for membrane-bound GTPases. All RasGRP family members contain C1 domains which, in other proteins, bind DAG (diacylglycerol) and thus mediate the proximal signal-transduction events induced by this lipid second messenger. The presence of C1 domains suggests that all RasGRPs could be regulated by membrane translocation driven by C1-DAG interactions. This has been demonstrated for RasGRP1 and RasGRP3, but has not been tested directly for RasGRP2, RasGRP4alpha and RasGRP4beta. Sequence alignments indicate that all RasGRP C1 domains have the potential to bind DAG. In cells, the isolated C1 domains of RasGRP1, RasGRP3 and RasGRP4alpha co-localize with membranes and relocalize in response to DAG, whereas the C1 domains of RasGRP2 and RasGRP4beta do not. Only the C1 domains of RasGRP1, RasGRP3 and RasGRP4alpha recognize DAG as a ligand within phospholipid vesicles and do so with differential affinities. Other lipid second messengers were screened as ligands for RasGRP C1 domains, but none was found to serve as an alternative to DAG. All of the RasGRP C1 domains bound to vesicles which contained a high concentration of anionic phospholipids, indicating that this could provide a DAG-independent mechanism for membrane binding by C1 domains. This concept was supported by demonstrating that the C1 domain of RasGRP2 could functionally replace the membrane-binding role of the C1 domain within RasGRP1, despite the inability of the RasGRP2 C1 domain to bind DAG. The RasGRP4beta C1 domain was non-functional when inserted into either RasGRP1 or RasGRP4, implying that the alternative splicing which produces this C1 domain eliminates its contribution to membrane binding.  相似文献   
133.
134.
135.
Human lipoxygenases (hLO) have been implicated in a variety of diseases and cancers and each hLO isozyme appears to have distinct roles in cellular biology. This fact emphasizes the need for discovering selective hLO inhibitors for both understanding the role of specific lipoxygenases in the cell and developing pharmaceutical therapeutics. To this end, we have modified a known lipoxygenase assay for high-throughput (HTP) screening of both the National Cancer Institute (NCI) and the UC Santa Cruz marine extract library (UCSC-MEL) in search of platelet-type 12-hLO (12-hLO) selective inhibitors. The HTP screen led to the characterization of five novel 12-hLO inhibitors from the NCI repository. One is the potent but non-selective michellamine B, a natural product, anti-viral agent. The other four compounds were selective inhibitors against 12-hLO, with three being synthetic compounds and one being alpha-mangostin, a natural product, caspase-3 pathway inhibitor. In addition, a selective inhibitor was isolated from the UCSC-MEL (neodysidenin), which has a unique chemical scaffold for a hLO inhibitor. Due to the unique structure of neodysidenin, steady-state inhibition kinetics were performed and its mode of inhibition against 12-hLO was determined to be competitive (K(i)=17microM) and selective over reticulocyte 15-hLO-1 (K(i) 15-hLO-1/12-hLO>30).  相似文献   
136.
137.
Insulin-like growth factors (IGFs) are indispensable peptide hormones for proper development of the central nervous system (CNS). Because IGF-1 exhibits neuroprotective and myelinogenetic effects, it possesses therapeutic potential in treating neurodegenerative demyelinating diseases such as multiple sclerosis (MS). However, IGF actions are largely dependant on high-affinity regulatory IGF binding proteins (IGFBPs), which are likely to interfere with therapeutic attempts at elevating IGF-1 levels in the CNS. In particular, IGFBP-2 plays a dominant role in IGF regulation in the CNS and is upregulated in several pathological conditions, including MS. The question remains as to whether IGFBPs should be considered "interfering" components of IGF treatment strategies or might possibly be utilized to clinical advantage. This review discusses our current understanding of biological functions of IGFBP-2 in the CNS and its implications in the demyelinating disease MS.  相似文献   
138.
Resistance to cadmium (Cd)-induced testicular necrosis is an autosomal recessive trait defined as the Cdm locus. Using positional cloning, we previously identified the Slc39a8 (encoding an apical-surface ZIP8 transporter protein) as the gene most likely responsible for the phenotype. In situ hybridization revealed that endothelial cells of the testis vasculature express high ZIP8 levels in two sensitive inbred mouse strains and negligible amounts in two resistant strains. In the present study, we isolated a 168.7-kb bacterial artificial chromosome (BAC), carrying only the Slc39a8 gene, from a Cd-sensitive 129/SvJ BAC library and generated BAC-transgenic mice. The BTZIP8-3 line, having three copies of the 129/SvJ Slc39a8 gene inserted into the Cd-resistant C57BL/6J genome (having its normal two copies of the Slc39a8 gene), showed tissue-specific ZIP8 mRNA expression similar to wild-type mice, mainly in lung, testis, and kidney. The 2.5-fold greater expression paralleled the fact that the BTZIP8-3 line has five copies, whereas wild-type mice have two copies, of the Slc39a8 gene. The ZIP8 mRNA and protein localized especially to endothelial cells of the testis vasculature in BTZIP8-3 mice. Cd treatment reversed Cd resistance (seen in nontransgenic littermates) to Cd sensitivity in BTZIP8-3 mice; reversal of the testicular necrosis phenotype confirms that Slc39a8 is unequivocally the Cdm locus. ZIP8 also localized specifically to the apical surface of proximal tubule cells in the BTZIP8-3 kidney. Cd treatment caused acute renal failure and signs of proximal tubular damage in the BTZIP8-3 but not nontransgenic littermates. BTZIP8-3 mice should be a useful model for studying Cd-induced disease in kidney. kidney; testis; ZIP8; bacterial artificial chromosome  相似文献   
139.
EphA4-dependent axon guidance is mediated by the RacGAP alpha2-chimaerin   总被引:1,自引:0,他引:1  
Neuronal network formation in the developing nervous system is dependent on the accurate navigation of nerve cell axons and dendrites, which is controlled by attractive and repulsive guidance cues. Ephrins and their cognate Eph receptors mediate many repulsive axonal guidance decisions by intercellular interactions resulting in growth cone collapse and axon retraction of the Eph-presenting neuron. We show that the Rac-specific GTPase-activating protein alpha2-chimaerin binds activated EphA4 and mediates EphA4-triggered axonal growth cone collapse. alpha-Chimaerin mutant mice display a phenotype similar to that of EphA4 mutant mice, including aberrant midline axon guidance and defective spinal cord central pattern generator activity. Our results reveal an alpha-chimaerin-dependent signaling pathway downstream of EphA4, which is essential for axon guidance decisions and neuronal circuit formation in vivo.  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号