首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   385篇
  免费   48篇
  国内免费   1篇
  434篇
  2022年   4篇
  2021年   5篇
  2020年   3篇
  2019年   3篇
  2018年   4篇
  2016年   5篇
  2015年   11篇
  2014年   11篇
  2013年   14篇
  2012年   17篇
  2011年   20篇
  2010年   13篇
  2009年   9篇
  2008年   19篇
  2007年   14篇
  2006年   15篇
  2005年   12篇
  2004年   18篇
  2003年   15篇
  2002年   8篇
  2001年   10篇
  2000年   16篇
  1999年   11篇
  1998年   10篇
  1997年   4篇
  1995年   7篇
  1994年   3篇
  1993年   4篇
  1992年   10篇
  1991年   11篇
  1990年   10篇
  1989年   8篇
  1988年   10篇
  1987年   7篇
  1985年   3篇
  1984年   5篇
  1982年   5篇
  1980年   6篇
  1979年   8篇
  1978年   4篇
  1976年   4篇
  1975年   4篇
  1974年   4篇
  1973年   7篇
  1972年   3篇
  1971年   9篇
  1970年   3篇
  1969年   3篇
  1968年   4篇
  1962年   3篇
排序方式: 共有434条查询结果,搜索用时 0 毫秒
91.
Chung JT  Keefer CL  Downey BR 《Theriogenology》2000,53(6):1273-1284
In the human and the mouse, intracytoplasmic sperm injection (ICSI) apparently triggers normal fertilization and may result in offspring. In the bovine, injection of spermatozoa must be accompanied by artificial methods of oocyte activation in order to achieve normal fertilization events (e.g., pronuclear formation). In this study, different methods of oocyte activation were tested following ICSI of in vitro-matured bovine oocytes. Bovine oocytes were centrifuged to facilitate sperm injection, and spermatozoa were pretreated with 5 mM dithiothreitol (DTT) to promote decondensation. Sperm-injected or sham-injected oocytes were activated with 5 microM ionomycin (A23187). Three hours after activation, oocytes with second polar bodies were selected and treated with 1.9 mM 6-dimethylaminopurine (DMAP). The cleavage rate of sperm-injected oocytes treated with ionomycin and DMAP was higher than with ionomycin alone (62 vs 27%, P < or = 0.05). Blastocysts (2 of 41 cleaved) were obtained only from the sperm-injected, ionomycin + DMAP-treated oocytes. Upon examination 16 h after ICSI, pronuclear formation was observed in 33 of 47 (70%) DMAP-treated oocytes. Two pronuclei were present in 18 of 33 (55%), while 1 and 3 pronuclei were seen in 8 of 33 (24%) and 7 of 33 (21%) oocytes, respectively. In sham-injected oocytes, pronuclear formation was observed in 15 of 38 (39%) with 9 (60%) having 2 pronuclei. Asa single calcium stimulation was insufficient and DMAP treatment could result in triploidy, activation by multiple calcium stimulations was tested. Three calcium stimulations (5 microM ionomycin) were given at 30-min intervals following ICSI. Two pronuclei were found in 12 of 41 (29%) injected oocytes. Increasing the concentration of ionomycin from 5 to 50 microM resulted in a higher rate of activation (41 vs 26%). The rate of metaphase III arrest was lower while the rate of pronuclear formation and cleavage development was higher in sperm-injected than sham-injected oocytes, suggesting that spermatozoa contribute to the activation process. Further improvements in oocyte activation following ICSI in the bovine are necessary.  相似文献   
92.
93.
Two-component systems (TCSs) are ubiquitous among bacteria and are among the most elegant and effective sensing systems in nature. They allow for efficient adaptive responses to rapidly changing environmental conditions. In this study, we investigated the biochemical characteristics of the Streptococcus mutans protein VicR, an essential response regulator that is part of the VicRK TCS. We dissected the DNA binding requirements of the recognition sequences for VicR in its phosphorylated and unphosphorylated forms. In doing so, we were able to make predictions for the expansion of the VicR regulon within S. mutans. With the ever increasing number of bacteria that are rapidly becoming resistant to even the antibiotics of last resort, TCSs such as the VicRK provide promising targets for a new class of antimicrobials.  相似文献   
94.
Assembly of microfilaments involves the conversion of actin from the monomeric (G) to the filamentous (F) form. The exact sequence of events responsible for this conversion is yet to be defined and, in particular, the role of calcium remains unclear. Intact and electropermeabilized human neutrophils were used to assess more directly the role of cytosolic calcium [( Ca2+]i) in actin assembly. Staining with 7-nitrobenz-2-oxa-1,3-diazole-phallacidin and right angle light scattering were used to monitor the formation of F-actin. Though addition of Ca2+ ionophores can be known to induce actin assembly, the following observations suggest that an increased [Ca2+]i is not directly responsible for receptor-induced actin polymerization: (a) intact cells in Ca2(+)-free medium, depleted of internal Ca2+ by addition of ionophore, responded to the formyl peptide fMLP with actin assembly despite the absence of changes in [Ca2+]i, assessed with Indo-1; (b) fMLP induced a significant increase in F-actin content in permeabilized cells equilibrated with medium containing 0.1 microM free Ca2+, buffered with up to 10 mM EGTA; (c) increasing [Ca2+]i beyond the resting level by direct addition of CaCl2 to permeabilized cells resulted in actin disassembly. Conversely, lowering [Ca2+]i resulted in spontaneous actin assembly. To reconcile these findings with the actin-polymerizing effects of Ca2+ ionophores, we investigated whether A23187 and ionomycin induced actin assembly by a mechanism independent of, or secondary to the increase in [Ca2+]i. We found that the ionophore-induced actin assembly was completely inhibited by the leukotriene B4 (LTB4) antagonist LY-223982, implying that the ionophore effect was secondary to LTB4 formation, possibly by stimulation of phospholipase A2. We conclude that actin assembly is not mediated by an increase in [Ca2+]i, but rather that elevated [Ca2+]i facilitates actin disassembly, an effect possibly mediated by Ca2(+)-sensitive actin filament-severing proteins such as gelsolin. Sequential actin assembly and disassembly may be necessary for functions such as chemotaxis.  相似文献   
95.
The shape changes and membrane ruffling that accompany neutrophil activation are dependent on the assembly and reorganization of the actin cytoskeleton, the molecular basis of which remains to be clarified. A role of protein kinase C (PKC) has been postulated because neutrophil activation, with the attendant shape and membrane ruffling changes, can be initiated by phorbol esters, known activators of PKC. It has become apparent, however, that multiple isoforms of PKC with differing substrate specificities exist. To reassess the role of PKC in cytoskeletal reorganization, we compared the effects of diacylglycerol analogs and of PKC antagonists on kinase activity and on actin assembly in human neutrophils. Ruffling of the plasma membrane was assessed by scanning EM, and spatial redistribution of filamentous (F)-actin was assessed by scanning confocal microscopy. Staining with NBD-phallacidin and incorporation of actin into the Triton X-100-insoluble ("cytoskeletal") fraction were used to quantify the formation of (F)-actin. [32P]ATP was used to detect protein phosphorylation in electroporated cells. Exposure of neutrophils to 4 beta-PMA (an activator of PKC) induced protein phosphorylation, membrane ruffling, and assembly and reorganization of the actin cytoskeleton, whereas the 4a-isomer, which is inactive towards PKC, failed to produce any of these changes. Moreover, 1,2-dioctanoylglycerol, mezerein, and 3-(N-acetylamino)-5-(N-decyl-N-methylamino)-benzyl alcohol, which are nonphorbol activators of PKC, also promoted actin assembly. Although these effects were consistent with a role of PKC, the following observations suggested that stimulation of conventional isoforms of the kinase were not directly responsible for actin assembly: (a) Okadaic acid, an inhibitor of phosphatases 1 and 2A, potentiated PMA-induced protein phosphorylation, but not actin assembly; and (b) PMA-induced actin assembly and membrane ruffling were not prevented by the conventional PKC inhibitors 1-(5-isoquinolinesulfonyl)-2-methylpiperazine, staurosporine, calphostin C, or sphingosine at concentrations that precluded PMA-induced protein phosphorylation and superoxide production. On the other hand, PMA-induced actin assembly was inhibited by long-chain fatty acid coenzyme A esters, known inhibitors of nuclear PKC (nPKC). We conclude that PMA-induced actin assembly is unlikely to be mediated by the conventional isoforms of PKC, but may be mediated by novel isoforms of the kinase such as nPKC.  相似文献   
96.
It is currently believed that a nonselective cation (NSC) channel, which responds to arginine vasotocin (an antidiuretic hormone) and stretch, regulates Na+ absorption in the distal nephron. However, the mechanisms of regulation of this channel remain incompletely characterized. To study the mechanisms of regulation of this channel, we used renal epithelial cells (A6) cultured on permeable supports. The apical membrane of confluent monolayers of A6 cells expressed a 29-pS channel, which was activated by stretch or by 3-isobutyl-1-methylxanthine (IBMX), an inhibitor of phosphodiesterase. This channel had an identical selectivity for Na+, K+, Li+, and Cs+, but little selectivity for Ca2+ (PCa/PNa < 0.005) or Cl (PCl/PNa < 0.01), identifying it as an NSC channel. Stretch had no additional effects on the open probability (P o) of the IBMX-activated channel. This channel had one open (“O”) and two closed (short “C S” and long “C L”) states under basal, stretch-, or IBMX-stimulated conditions. Both stretch and IBMX increased the P o of the channel without any detectable changes in the mean open or closed times. These observations led us to the conclusion that a kinetic model “C L C S O” was the most suitable among three possible linear models. According to this model, IBMX or stretch would decrease the leaving rate of the channel for C L from C S, resulting in an increase in P o. Cytochalasin D pretreatment abolished the response to stretch or IBMX without altering the basal activity. H89 (an inhibitor of cAMP-dependent protein kinase) completely abolished the response to both stretch and IBMX, but, unlike cytochalasin D, also diminished the basal activity. We conclude that: (a) the functional properties of the cAMP-activated NSC channel are similar to those of the stretch-activated one, (b) the actin cytoskeleton plays a crucial role in the activation of the NSC channel induced by stretch and cAMP, and (c) the basal activity of the NSC channel is maintained by PKA-dependent phosphorylation but is not dependent on actin microfilaments.  相似文献   
97.
The possible role of tyrosine phosphorylation in the activation of granulocytic HL60 cells was examined using vanadate, a phosphotyrosine phosphatase inhibitor. Treatment of permeabilized cells with micromolar concentrations of vanadate resulted in a substantial accumulation of tyrosine-phosphorylated proteins, detected by immunoblotting. At comparable concentrations, vanadate was also found to elicit an NADPH-dependent burst of oxygen utilization. Actin assembly, studied using 7-nitrobenz-2-oxa-1,3-diazole (NBD)-phallacidin, was similarly stimulated by vanadate, though considerably higher concentrations were required to observe this effect. In contrast with these responses, the secretion of lysozyme was not stimulated by vanadate, nor did vanadate affect calcium-induced secretion. Therefore, accumulation of tyrosine-phosphorylated proteins is associated with stimulation of some, but not all, of the responses characteristic of granulocytic cell activation. This indicates that the effects of vanadate are selective and suggests divergence of the signalling pathways leading to the individual effectors.  相似文献   
98.
An early 14,000-dalton (14K) antigen of adenovirus 5, hitherto designated 10.5K and thought to be from early region 1 (E1), has been shown to be a product of region E4 on the following evidence. In KB cells infected with the adenovirus 5 mutants dl312 and dl313, containing large deletions in region E1, this antigen was produced in a form having the same mobility as that in wild-type infections. In a range of rodent cells transformed by adenovirus 5 DNA, the synthesis of 14K antigen and the ability of these cells to elicit an immune response to this protein both correlated with the presence of sequences from region E4 of the viral genome. A 14K polypeptide was synthesized in a cell-free system programmed with infected-cell mRNA and was found to be identical to the in vivo antigen in antigenicity, in electrophoretic mobility, and in [35S]methionine-containing tryptic peptides. After labeling with [35S]methionine and several 3H-amino acids, this in vitro product gave an N-terminal sequence identical to that expected from one of the open reading frames (reading region 3) in the DNA sequence for region E4 of Hérissé et al. (Nucleic Acids Res. 9:4023-4042, 1981). It is likely that this antigen is the same as the nucleus-associated 11K polypeptide from E4 described by other authors.  相似文献   
99.
The microfilament lattice, composed primarily of filamentous (F)-actin, determines in large part the mechanical (deformability) properties of neutrophils, and thus may regulate the ability of neutrophils to transit a microvascular bed. Circulating factors may stimulate the neutrophil to become rigid and therefore be retained in the capillaries. We hypothesized that cell stiffening might be attenuated by an increase in intracellular cAMP. A combination of cell filtration and cell poking (mechanical indentation) was used to measure cell deformability. Neutrophils pretreated with dibutyryl cAMP (db-cAMP) or the combination of prostaglandin E2 (PGE2, a stimulator of adenylate cyclase) and isobutylmethylxanthine (IBMX, an inhibitor of phosphodiesterase) demonstrated significant inhibition of the n-formyl-methionyl-leucyl-phenylalanine (fMLP)-inducing stiffening. The inhibition of cell stiffening was associated with an increase in intracellular cAMP as measured by enzyme-linked immunoassay (EIA) and an increase in the activity of the cAMP-dependent kinase (A-kinase). Treatment with PGE2 and IBMX also resulted in a decrease in the F-actin content of stimulated neutrophils as assayed by NBD-phallacidin staining and flow cytometry or by changes in right angle light scattering. Direct addition of cAMP to electropermeabilized neutrophils resulted in attenuation of fMLP-induced actin assembly. Neutrophils stimulated with fMLP demonstrated a rapid redistribution of F-actin from a diffuse cortical location to a peripheral ring as assessed by conventional and scanning confocal fluorescence microscopy. Pretreatment of neutrophils with the combination of IBMX and PGE2 resulted in incomplete development and fragmentation of the cortical ring. We conclude that assembly and redistribution of F-actin may be responsible for cell stiffening after exposure to stimulants and that this response was attenuated by agents that increase intracellular cAMP, by altering the amount and spatial organization of the microfilament component of the cytoskeleton.  相似文献   
100.
Mechanisms of error discrimination by Escherichia coli DNA polymerase I   总被引:2,自引:0,他引:2  
The mechanism of base selection by DNA polymerase I of Escherichia coli has been investigated by kinetic analysis. The apparent KM for the insertion of the complementary nucleotide dATP into the hook polymer poly(dT)-oligo(dA) was found to be 6-fold lower than that for the noncomplementary nucleotide dGTP, whereas the Vmax for insertion of dATP was 1600-fold higher than that for dGTP. The ratio of Kcat/KM values for complementary and mismatched nucleotides of 10(4) demonstrates the extremely high specificity of base selection by DNA polymerase I and is in agreement with results obtained with a different template-primer, poly(dC)-oligo(dG) [El-Deiry, W. S., Downey, K. M., & So, A. G. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 7378]. Studies on the effects of phosphate ion on the polymerase and 3'- to 5'-exonuclease activities of DNA polymerase I showed that, whereas the polymerase activity was somewhat stimulated by phosphate, the exonuclease activity was markedly inhibited, being 50% inhibited at 25 mM phosphate and greater than 90% inhibited at 80 mM phosphate. Selective inhibition of the exonuclease activity by phosphate also resulted in inhibition of template-dependent conversion of a noncomplementary dNTP to dNMP and, consequently, markedly affected the kinetic constants for insertion of noncomplementary nucleotides. The mutagenic metal ion Mn2+ was found to affect error discrimination by both the polymerase and 3'- and 5'-exonuclease activities of DNA polymerase I.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号