首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   276篇
  免费   31篇
  2020年   2篇
  2019年   4篇
  2018年   2篇
  2017年   7篇
  2016年   5篇
  2015年   5篇
  2014年   8篇
  2013年   13篇
  2012年   6篇
  2011年   14篇
  2010年   8篇
  2009年   12篇
  2008年   14篇
  2007年   13篇
  2006年   9篇
  2005年   8篇
  2004年   12篇
  2003年   16篇
  2002年   8篇
  2001年   12篇
  2000年   6篇
  1999年   6篇
  1998年   12篇
  1997年   5篇
  1996年   2篇
  1995年   2篇
  1994年   4篇
  1993年   4篇
  1992年   5篇
  1991年   6篇
  1990年   8篇
  1989年   4篇
  1988年   6篇
  1987年   9篇
  1986年   4篇
  1985年   3篇
  1984年   4篇
  1983年   4篇
  1982年   3篇
  1981年   4篇
  1979年   3篇
  1978年   2篇
  1977年   2篇
  1974年   2篇
  1973年   4篇
  1972年   6篇
  1967年   2篇
  1950年   1篇
  1944年   1篇
  1920年   1篇
排序方式: 共有307条查询结果,搜索用时 31 毫秒
21.
Extensive grasslands are considered to be of high biodiversity value, but are under threat from intensification and abandonment. We studied butterfly species richness and abundance in 47 hay and grazing meadows in the Picos de Europa, northern Spain in 2004. Nine transects were walked around the perimeter of the meadows from the 1 June to 28 July with butterflies recorded to species or species-group. Land-use, abiotic, and sward variables were also recorded. Change in meadow extent was estimated by comparing a digital map of open meadows with a cadastral map with 1950s provenance. We found: A decrease in open area, mostly attributable to reduction in grazing meadows. 75 or more butterfly species with species richness principally, and positively, influenced by altitude and presence of scrub in the body of the meadow. Hay meadow management was a positive influence on richness of satyrids. When all butterflies were considered together, the only significant factor influencing abundance was Plantago lanceolata (−ve). For sub-groups of the butterfly community there was no consistent pattern, although P. lanceolata was identified as a (−ve) factor in relation to hesperiid, nymphalid, satyrid, and Viola-feeding fritillary groups. Several regression models included components that could be linked to abiotic influences (water, aspect, altitude) but many were indicative of abandonment or relaxation of management intensity (scrub, Pteridium aquilinum, Asphodelus albus), sward components, fragmentation (distance to nearest meadow, number of meadows within 100 m), and land use (hay management, summer grazing). The results are discussed in relation to changing socio-economics, including the potential impact of tourism, and the need for financial instruments to support extensive farming.  相似文献   
22.
The deep sea, the largest ecosystem on Earth and one of the least studied, harbours high biodiversity and provides a wealth of resources. Although humans have used the oceans for millennia, technological developments now allow exploitation of fisheries resources, hydrocarbons and minerals below 2000 m depth. The remoteness of the deep seafloor has promoted the disposal of residues and litter. Ocean acidification and climate change now bring a new dimension of global effects. Thus the challenges facing the deep sea are large and accelerating, providing a new imperative for the science community, industry and national and international organizations to work together to develop successful exploitation management and conservation of the deep-sea ecosystem. This paper provides scientific expert judgement and a semi-quantitative analysis of past, present and future impacts of human-related activities on global deep-sea habitats within three categories: disposal, exploitation and climate change. The analysis is the result of a Census of Marine Life--SYNDEEP workshop (September 2008). A detailed review of known impacts and their effects is provided. The analysis shows how, in recent decades, the most significant anthropogenic activities that affect the deep sea have evolved from mainly disposal (past) to exploitation (present). We predict that from now and into the future, increases in atmospheric CO(2) and facets and consequences of climate change will have the most impact on deep-sea habitats and their fauna. Synergies between different anthropogenic pressures and associated effects are discussed, indicating that most synergies are related to increased atmospheric CO(2) and climate change effects. We identify deep-sea ecosystems we believe are at higher risk from human impacts in the near future: benthic communities on sedimentary upper slopes, cold-water corals, canyon benthic communities and seamount pelagic and benthic communities. We finalise this review with a short discussion on protection and management methods.  相似文献   
23.
Here we describe novel forms of structural integration between endo- and episymbiotic microbes and an unusual new species of snail from hydrothermal vents in the Indian Ocean. The snail houses a dense population of γ-proteobacteria within the cells of its greatly enlarged esophageal gland. This tissue setting differs from that of all other vent mollusks, which harbor sulfur-oxidizing endosymbionts in their gills. The significantly reduced digestive tract, the isotopic signatures of the snail tissues, and the presence of internal bacteria suggest a dependence on chemoautotrophy for nutrition. Most notably, this snail is unique in having a dense coat of mineralized scales covering the sides of its foot, a feature seen in no other living metazoan. The scales are coated with iron sulfides (pyrite and greigite) and heavily colonized by - and δ-proteobacteria, likely participating in mineralization of the sclerites. This novel metazoan-microbial collaboration illustrates the great potential of organismal adaptation in chemically and physically challenging deep-sea environments.  相似文献   
24.
Phenylketonuric patients are on a special diet that lacks certain essential fatty acids. This study evaluates the essential fatty acid status of a group of phenylketonuric patients in the Netherlands undergoing dietary treatment. To this end, the essential fatty acid status of nine phenylketonuria patients was studied. On the basis of age and gender, two control subjects were selected for each patient. The essential fatty acid composition of duplicate food portions and the essential fatty acid status of plasma and erythrocytes were analyzed. Phenylketonuria subjects had a different essential fatty acid profile from their peers, especially concerning the n-3 fatty acids. N-6 and n-3 fatty long-chain polyenes were hardly consumed by phenylketonuria subjects, in contrast to the control subjects. Linoleic acid, on the other hand, was consumed in significantly higher amounts by phenylketonuria subjects and made up about 40% of their daily fat consumption. The essential fatty acid consumption pattern of the phenylketonuria subjects is mirrored by the essential fatty acid concentrations in blood. The essential fatty acid status of the phenylketonuric diet should be improved in order to prevent deficiency in n-3 fatty acids.  相似文献   
25.

Background

Receptors with a single transmembrane (TM) domain are essential for the signal transduction across the cell membrane. NMR spectroscopy is a powerful tool to study structure of the single TM domain. The expression and purification of a TM domain in Escherichia coli (E.coli) is challenging due to its small molecular weight. Although ketosteroid isomerase (KSI) is a commonly used affinity tag for expression and purification of short peptides, KSI tag needs to be removed with the toxic reagent cyanogen bromide (CNBr).

Result

The purification of the TM domain of p75 neurotrophin receptor using a KSI tag with the introduction of a thrombin cleavage site is described herein. The recombinant fusion protein was refolded into micelles and was cleaved with thrombin. Studies showed that purified protein could be used for structural study using NMR spectroscopy.

Conclusions

These results provide another strategy for obtaining a single TM domain for structural studies without using toxic chemical digestion or acid to remove the fusion tag. The purified TM domain of p75 neurotrophin receptor will be useful for structural studies.  相似文献   
26.

Background

Due partly to physicians’ unawareness, many adults with Pompe disease are diagnosed with great delay. Besides, it is not well known which factors influence the rate of disease progression, and thus disease outcome. We delineated the specific clinical features of Pompe disease in adults, and mapped out the distribution and severity of muscle weakness, and the sequence of involvement of the individual muscle groups. Furthermore, we defined the natural disease course and identified prognostic factors for disease progression.

Methods

We conducted a single-center, prospective, observational study. Muscle strength (manual muscle testing, and hand-held dynamometry), muscle function (quick motor function test), and pulmonary function (forced vital capacity in sitting and supine positions) were assessed every 3–6 months and analyzed using repeated-measures ANOVA.

Results

Between October 2004 and August 2009, 94 patients aged between 25 and 75 years were included in the study. Although skeletal muscle weakness was typically distributed in a limb-girdle pattern, many patients had unfamiliar features such as ptosis (23%), bulbar weakness (28%), and scapular winging (33%). During follow-up (average 1.6 years, range 0.5-4.2 years), skeletal muscle strength deteriorated significantly (mean declines of ?1.3% point/year for manual muscle testing and of ?2.6% points/year for hand-held dynamometry; both p<0.001). Longer disease duration (>15 years) and pulmonary involvement (forced vital capacity in sitting position <80%) at study entry predicted faster decline. On average, forced vital capacity in supine position deteriorated by 1.3% points per year (p=0.02). Decline in pulmonary function was consistent across subgroups. Ten percent of patients declined unexpectedly fast.

Conclusions

Recognizing patterns of common and less familiar characteristics in adults with Pompe disease facilitates timely diagnosis. Longer disease duration and reduced pulmonary function stand out as predictors of rapid disease progression, and aid in deciding whether to initiate enzyme replacement therapy, or when.
  相似文献   
27.
Experimental ecology at deep-sea hydrothermal vents: a perspective   总被引:1,自引:0,他引:1  
In situ and laboratory experiments conducted over the past quarter of a century have greatly increased our understanding of the ecology of deep-sea hydrothermal systems. Early experiments suggested that chemosynthetic primary production constituted the principal source of organic matter for biological communities associated with vents, although subsequent studies have revealed many complexities associated with interactions between microbes and higher organisms inhabiting these ecosystems. A diversity of host-microbial symbiont relationships has been identified and experimental studies have revealed the exquisite physiological adaptations within the giant tubeworm, Riftia pachyptila, for the uptake, fixation, and assimilation of carbon. In vitro experiments demonstrated the unusual sulfide binding properties of tubeworm hemoglobin that prevent inhibition of the cytochrome-c oxidase enzyme system during transport of sulfide to symbiont-bearing tissues. Studies of respiration and growth of several species of vent organisms conducted over the past two decades transformed earlier views that low metabolism and slow growth are characteristics of all organisms inhabiting all deep-sea environments. Results of recent experiments suggest that metabolic rates correlate with the degree of mobility of the organisms rather than with any specific attribute of the deep-sea environment itself, and growth rates of certain vent organisms (e.g., R. pachyptila) were found to be among the highest in any marine environments. While extreme thermal tolerance has been suggested as characteristic of certain vent fauna (e.g., alvinellid polychaetes and alvinocarid shrimp), the majority of vent metazoans live at temperatures below 20 °C and additional experiments are necessary to reconcile field experiments documenting thermal tolerance in situ, thermal tolerance in vivo, and thermal sensitivity of biochemical constituents of vent organisms. Transplantation and clearance experiments, as well as in situ characterization of vent fluid chemistry, have greatly increased our understanding of organism–environment interactions. Early analyses of metazoan egg size and larval morphology, coupled with in vivo larval culture experiments, available physical oceanographic data, and genetic studies of gene flow, have contributed greatly to our understanding of mechanisms of dispersal between widely separated vent sites. The documentation of invertebrate colonization and succession of new vents following a volcanic eruption, and a series of manipulative field experiments, provide considerable insights into the relative roles of abiotic conditions and biotic interactions in structuring vent communities. Recent and emerging technological developments, such as in situ chemical analyzers, observatory approaches, and laboratory-based pressure culture systems, should provide invaluable new experimental tools for tackling many remaining questions concerning the ecology of deep-sea hydrothermal systems.  相似文献   
28.
Sanger and shotgun sequencing of Clostridium botulinum strain Af84 type Af and its botulinum neurotoxin gene (bont) clusters identified the presence of three bont gene clusters rather than the expected two. The three toxin gene clusters consisted of bont subtypes A2, F4 and F5. The bont/A2 and bont/F4 gene clusters were located within the chromosome (the latter in a novel location), while the bont/F5 toxin gene cluster was located within a large 246 kb plasmid. These findings are the first identification of a C. botulinum strain that contains three botulinum neurotoxin gene clusters.  相似文献   
29.
Slips, strings and species   总被引:3,自引:0,他引:3  
  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号