首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90篇
  免费   12篇
  2022年   3篇
  2021年   5篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2015年   3篇
  2014年   1篇
  2013年   1篇
  2012年   6篇
  2011年   1篇
  2010年   7篇
  2009年   5篇
  2008年   3篇
  2007年   8篇
  2006年   2篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
  2000年   4篇
  1999年   3篇
  1998年   6篇
  1997年   2篇
  1995年   2篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1989年   3篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   7篇
  1980年   1篇
  1979年   2篇
  1978年   3篇
  1976年   1篇
  1968年   1篇
  1966年   1篇
  1965年   1篇
排序方式: 共有102条查询结果,搜索用时 15 毫秒
41.
Hitchhiking effects of advantageous mutations have been invoked to explain reduced polymorphism in regions of low crossing-over in Drosophila. Besides reducing DNA heterozygosity, hitchhiking effects should produce strong linkage disequilibrium and a frequency spectrum skewed toward an excess of rare polymorphisms (compared to the neutral expectation). We measured DNA polymorphism in a Zimbabwe population of D. melanogaster at three loci, yellow, achaete, and suppressor of forked, located in regions of reduced crossing-over. Similar to previously published surveys of these genomic regions in other populations, we observed low levels of nucleotide variability. However, the frequency spectrum was compatible with a neutral model, and there was abundant evidence for recombination in the history of the yellow and ac genes. Thus, some aspects of the data cannot be accounted for by a simple hitchhiking model. An alternative hypothesis, background selection, might be compatible with the observed patterns of linkage disequilibrium and the frequency spectrum. However, this model cannot account for the observed reduction in nucleotide heterozygosity. Thus, there is currently no satisfactory theoretical model for the data from the tip and base of the X chromosome in D. melanogaster.   相似文献   
42.
Oligogalacturonic acids (OGAs), derived from plant cell wall pectin, have been implicated in a number of signal transduction pathways involved in growth, development and defense responses of higher plants. This study investigates the size range of OGAs capable of inducing ethylene synthesis in tomato plants, and demonstrates that in contrast with many other effects, only short chain OGAs are active. Oligomers across a range of DP from 2-15 were separated and purified to homogeneity by QAE-Sephadex anion exchange chromatography using a novel elution system. The OGAs were applied to tomato plants and assayed for their ability to induce ethylene gas release and changes in steady state levels of mRNA encoding the ethylene forming enzyme aminocyclopropane-1-carboxylic acid oxidase (ACO). The study demonstrated that only OGAs in the size range of DP4-6 were active both in eliciting ACO expression and in the production of ethylene.   相似文献   
43.
One of the most spectacular motions is the generation of the acrosomal process in the limulus sperm. On contact with the egg, the sperm generates a 60-mum-long process that literally drills its way through the jelly surrounding the egg. This irresversible reaction takes only a few seconds. We suggested earlier that this motion is driven by a change in twist of the actin filaments comprising the acrosomal process. In this paper we analyze the so-called false discharge, a reversible reaction, in which the acrosomal filament bundle extends laterally from the base of the sperm and not anteriorly from the apex. Unlike the true discharge, which is straight, the false discharge is helical. Before extension, the filament bundle is coiled about the base of the sperm. In the coil, the bundle is not smoothly bent but consists of arms (straight segments) and elbows (corners) so that the coil looks like a 14-sided polygon. The extension of the false discharge works as follows: starting at the base of the bundle, the filaments change their twist which concomitantly changes the orientations of the elbows relative to each other; that is, in the coil, the elbows all like in a common plane, but after the change in twist, the plane of each elbow is rotated to be perpendicular to that of its neighbors. This change transforms the bundle from a compact coil into an extended left- handed helix. Because the basal end of the bundle is unconstrained, the extension is lateral. The true discharge works the same way but starts at the apical end of the bundle. The apical end, however, is constrained by its passage through the nuclear canal, which directs the extention anteriorly. Unlike the false discharge, during the true discharge the elbows are melted out, making the reaction irreversible. This study shows that rapid movement can be regenerated by actin without myosin and gives us insight into the molecular mechanism.  相似文献   
44.
The picosecond fluorescence kinetics and quantum yield from bovine rhodopsin were measured in the 5-40 degrees K range. The fluorescence rise and decay times are faster than our resolution of 15 ps (full width at half maximum) over this entire temperature range. The size of the observed emission was also temperature independent, and we find that the upper limit of rhodopsin's fluorescence quantum yield to be phi f approximately equal to 10(-5). Replacing all of rhodopsin's exchangeable protons with deuterons by suspending rhodopsin in D2O had no effect on either the kinetics of the emission or the value of the quantum yield. Our data provide strong confirmation of the idea that the first step in the visual process is an excited-state cis-to-trans isomerization about the C11-C12 double bond of retinal.  相似文献   
45.
Adenosine 3',5'-cyclic monophosphate (cAMP) concentration and 3',5'-cyclic-nucleotide phosphodiesterase (PDE) activity were measured in skeletal muscle, heart, and liver of rats exposed to 1, 3, 5, and 7 days of cold. Cyclic nucleotide concentration increased in fast-twitch red muscle at the same time that PDE activity was decreasing. Nucleotide concentration and enzyme activity of slow-twitch red muscle were not altered by the cold exposure. The PDE activity of fast-twitch white muscle was elevated approximately 50% above control after 1 and 3 days of cold exposure. By the 5th day in the cold, white muscle PDE activity had returned to control levels and remained there through the 7th day of experimentation. cAMP concentration in hearts of cold-exposed rats was significantly (P less than 0.01) elevated above control at all time points measured. Myocardial PDE activity was elevated above control (P less than 0.05) at 1 and 3 days of cold exposure but returned to control levels by the 5th day in the cold. Hepatic cAMP and PDE activity were elevated above control at all time points analyzed. These data suggest that changes in cyclic nucleotide metabolism play a role in attaining homeostasis during acute cold exposure.  相似文献   
46.
47.
48.
49.
The influence of increasing the in vivo concentration of cyclic AMP on the activity of cyclic nucleotide phosphodiesterase (PDE) in rat heart was investigated. One, three, and five hourly injections of 5.0 mg dibutyryl (Bt2) cyclic AMP significantly increased the activity of PDE in the supernatant fraction of rat heart using 1.0 microM cyclic AMP as the assay substrate concentration. When 100 microM cyclic AMP was used in the assay reaction, increases in enzymes activity were seen following five and eight nucleotide injections. The nucleotide-induced increase in PDE activity was dose dependent. When the five-injection protocol was used, PDE activity remained elevated for at least 4 h, while activity had returned to control levels within this time when two hourly injections were used. The nucleotide stimulation of PDE activity was blocked by cycloheximide. Five hourly infections of Bt2 cyclic AMP increased PDE activity in the liver and fast-twitch red muscle. A reduction in PDE activity in fast-twitch white muscle was seen following nucleotide injections. These findings are consistent with the hypothesis that prolonged elevations in the intracellular concentration of cyclic AMP cause an elevation in myocardial PDE activity. The increased activity seems to be the result of protein synthesis. These data suggest that cyclic AMP contributes significantly in regulating its own metabolism in the rat heart.  相似文献   
50.
Numerous cellular biochemical events caused by hormones are mediated throught cyclic AMP. Although many changes occur in the cell during exercise that could be attributed to this nucleotide, little evidence is available implicating it as an important regulator of exercise metabolism. In this investigation it was found that a 60 min bout of treadmill exercise caused a 2.4-fold increase in myocardial cyclic AMP immediately following the work. Rather than the imemediate nucleotide hydrolysis that was expected, it was found that the elevated cyclic AMP level remained for approx. 24 h before returning to control levels. Cardiac glycogen fell to 30% of control after work but supercompensated 60% above control within 1 h following exercise. Therefore, cardiac cyclic AMP was elevated at a time when glycogen was being synthesized. Study of the temporal relationship between the exercise-induced increase in cyclic AMP and cyclic nucleotide phosphodiesterase indicated that the work caused an increase in the hearts' capacity to hydrolyze cyclic AMP. Measurement of heart phosphodiesterase at substrate concentrations of 1.0 and 100 μM produced significant increased in enzyme activity immediately following exercise which remained elevated for 48 h and was back to control activity 96 h following work. These data present a potentially fascinating model for the study of the dissociation between cyclic AMP, glycogenesis and elevations in phosphodiesterase activity in the heart.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号