首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12272篇
  免费   1129篇
  国内免费   5篇
  2023年   58篇
  2022年   69篇
  2021年   163篇
  2020年   112篇
  2019年   133篇
  2018年   164篇
  2017年   140篇
  2016年   276篇
  2015年   364篇
  2014年   455篇
  2013年   599篇
  2012年   778篇
  2011年   806篇
  2010年   496篇
  2009年   476篇
  2008年   703篇
  2007年   666篇
  2006年   673篇
  2005年   631篇
  2004年   670篇
  2003年   616篇
  2002年   597篇
  2001年   149篇
  2000年   118篇
  1999年   165篇
  1998年   164篇
  1997年   130篇
  1996年   142篇
  1995年   115篇
  1994年   132篇
  1993年   127篇
  1992年   136篇
  1991年   112篇
  1990年   108篇
  1989年   87篇
  1988年   105篇
  1987年   102篇
  1986年   93篇
  1985年   100篇
  1984年   105篇
  1983年   109篇
  1982年   102篇
  1981年   102篇
  1980年   92篇
  1979年   72篇
  1978年   68篇
  1977年   62篇
  1976年   66篇
  1974年   64篇
  1973年   57篇
排序方式: 共有10000条查询结果,搜索用时 296 毫秒
841.
The effects of freeze-thaw, freezing and sediment geochemistry on terminal anaerobic processes occurring in sediments taken from below cyanobacterial mats in meltwater ponds of the McMurdo Ice Shelf in Antarctica were investigated. Depending on the geochemical and physical status of the sediments (i.e., frozen or thawed), as well as passage of sediment through a freeze-thaw cycle, terminal carbon and electron flow shifted in which the proportions of hydrogen and acetate utilized for methanogenesis and sulfate reduction changed. Thus, in low-sulfate (or chloride) sediment which was thawed and incubated at 4 degrees C, total carbon and electron flow were mediated by acetate-driven sulfate reduction and H(2)-driven methanogenesis. When the same sediments were incubated frozen, both methanogenesis and sulfate reduction decreased. However, under these conditions methanogenesis was favored over sulfate reduction, and carbon flow from acetate to methane increased relative to sulfate reduction; >70% of methane was contributed by acetate, and more than 80% of acetate was oxidized by pathways not coupled to sulfate reduction. In high-sulfate pond sediments, sulfate reduction was a major process mediating terminal carbon and electron flow in both unfrozen and frozen incubations. However, as with low-sulfate sediments, acetate oxidation became uncoupled from sulfate reduction with freezing. Geochemical and temperature effects could be expressed by linear models in which the log (methanogenesis to sulfate reduction) was negative log linear with respect to either temperature or the log of the sulfate (or chloride) concentration. From these relationships it was possible to predict the ratio for a given temperature (low-sulfate sediments) or sulfate (chloride) concentration. Small transitory changes, such as elevated sulfate reduction coupled to increased acetate turnover, resulted from application of a freeze-thaw cycle to low-salinity pond sediments. The results demonstrate how ecophysiological processes may change in anaerobic systems under extreme conditions (e.g., freezing) and provide new insights into microbial events occurring under these conditions.  相似文献   
842.
The genotypic diversity of Actinomyces naeslundii genospecies 2 (424 isolates) and Streptococcus oralis (446 isolates) strains isolated from two sound approximal sites in all subjects who were either caries active (seven subjects) or caries free (seven subjects) was investigated by using the repetitive extragenic palindromic PCR. The plaque from the caries-active subjects harbored significantly greater proportions of mutans streptococci and lactobacilli and a smaller proportion of A. naeslundii organisms than the plaque sampled from the caries-free subjects. These data confirmed that the sites of the two groups of subjects were subjected to different environmental stresses, probably determined by the prevailing or fluctuating acidic pH values. We tested the hypothesis that the microfloras of the sites subjected to greater stresses (the plaque samples from the caries-active subjects) would exhibit reduced genotypic diversity since the sites would be less favorable. We found that the diversity of A. naeslundii strains did not change (chi2 = 0.68; P = 0.41) although the proportional representation of A. naeslundii was significantly reduced (P < 0.05). Conversely, the diversity of the S. oralis strains increased (chi2 = 11.71; P = 0.0006) and the proportional representation of S. oralis did not change. We propose that under these environmental conditions the diversity and number of niches within the oral biofilm that could be exploited by S. oralis increased, resulting in the increased genotypic diversity of this species. Apparently, A. naeslundii was not able to exploit the new niches since the prevailing conditions within the niches may have been deleterious and not supportive of its proliferation. These results suggest that environmental stress may modify a biofilm such that the diversity of the niches is increased and that these niches may be successfully exploited by some, but not necessarily all, members of the microbial community.  相似文献   
843.
During a study of ureolytic microbial calcium carbonate (CaCO(3)) precipitation by bacterial isolates collected from different environmental samples, morphological differences were observed in the large CaCO(3) crystal aggregates precipitated within bacterial colonies grown on agar. Based on these differences, 12 isolates were selected for further study. We hypothesized that the striking differences in crystal morphology were the result of different microbial species or, alternatively, differences in the functional attributes of the isolates selected. Sequencing of 16S rRNA genes showed that all of the isolates were phylogenetically closely related to the Bacillus sphaericus group. Urease gene diversity among the isolates was examined by using a novel application of PCR-denaturing gradient gel electrophoresis (DGGE). This approach revealed significant differences between the isolates. Moreover, for several isolates, multiple bands appeared on the DGGE gels, suggesting the apparent presence of different urease genes in these isolates. The substrate affinities (K(m)) and maximum hydrolysis rates (V(max)) of crude enzyme extracts differed considerably for the different strains. For certain isolates, the urease activity increased up to 10-fold in the presence of 30 mM calcium, and apparently this contributed to the characteristic crystal formation by these isolates. We show that strain-specific calcification occurred during ureolytic microbial carbonate precipitation. The specificity was mainly due to differences in urease expression and the response to calcium.  相似文献   
844.
Polymerase chain reaction (PCR) is an important tool for pathogen detection, but historically, it has not been possible to accurately identify PCR products without sequencing, Southern blots, or dot-blots. Microarrays can be coupled with PCR where they serve as a set of parallel dot-blots to enhance product detection and identification. Microarrays are composed of many discretely located probes on a solid substrate such as glass. Each probe is composed of a sequence that is complimentary to a pathogen-specific gene sequence. PCR is used to amplify one or more genes and the products are then hybridized to the array to identify species-specific polymorphism within one or more genes. We illustrate this type of array using 16S rDNA probes suitable for distinguishing between several salmonid pathogens. We also describe the use of microarrays for direct detection of either RNA or DNA without the aid of PCR, although the sensitivity of these systems currently limits their application for pathogen detection. Finally, microarrays can also be used to "fingerprint" bacterial isolates and they can be used to identify diagnostic markers suitable for developing new PCR-based detection assays. We illustrate this type of array for subtyping an important food-borne pathogen, Listeria monocytogenes.  相似文献   
845.
Computational cellular models are becoming crucial for the analysis of complex biological systems. An important new paradigm for cellular modeling involves building a comprehensive scaffold of molecular interactions and then mining this scaffold to reveal a hierarchy of signaling, regulatory and metabolic pathways. We review the important trends that make this approach feasible and describe how they are spurring the development of models at multiple levels of abstraction. Pathway maps can be extracted from the scaffold using "high-level" computational models, which identify the key components, interactions and influences required for more detailed "low-level" models. Large-scale experimental measurements validate high-level models, whereas targeted experimental manipulations and measurements test low-level models.  相似文献   
846.
For almost a century, biologists have used trait scaling relationships(bi-variate scatter-plots of trait size versus body size) tocharacterize phenotypic variation within populations, and tocompare animal shape across populations or species. Scalingrelationships are a popular metric because they have long beenthought to reflect underlying patterns of trait growth and development.However, the physiological mechanisms generating animal scalingare not well understood, and it is not yet clear how scalingrelationships evolve. Here we review recent advances in developmentalbiology, genetics, and physiology as they pertain to the controlof growth of adult body parts in insects. We summarize fourmechanisms known to influence either the rate or the durationof cell proliferation within developing structures, and suggesthow mutations in these mechanisms could affect the relativesizes of adult body parts. By reviewing what is known aboutthese four processes, and illustrating how they may contributeto patterns of trait scaling, we reveal genetic mechanisms likelyto be involved in the evolution of insect form.  相似文献   
847.
Single-cell transcript analysis of pancreas development   总被引:9,自引:0,他引:9  
  相似文献   
848.
Glioblastoma (GBM) remains one of the most challenging solid cancers to treat due to its highly proliferative, angiogenic and invasive nature. The small molecule CDK inhibitor, flavopiridol, has demonstrated antitumor activity in human xenograft models and is currently in clinical trials showing efficacy in patients with advanced disease. We have developed an experimental animal model using the murine glioma GL261 cells as a novel in vivo system to screen potential therapeutic agents for GBM. Results of in vitro testing demonstrate that flavopiridol has several relevant clinical characteristics such as its ability to: 1. inhibit cell growth; 2. inhibit cell migration; 3. decrease expression of cyclin D1, CDK4 and p21; 4. induce apoptosis in cells with high levels of p27 expression; and 5. decrease the expression of the anti-apoptotic protein Bcl-2. The mechanism by which flavopiridol induces apoptosis is mitochondrial-mediated. We demonstrate by electron microscopy and immunohistochemistry that drug treatment induces mitochondrial damage that was accompanied by the release of cytochrome c into the cytosol together with the translocation of apoptosis inducing factor (AIF) into the nucleus. This finding in murine glioma cells differs from the mechanism of flavopiridolinduced cell death reported by us for human glioma cells (Alonso et al., Mol Cancer Ther 2003; 2:139) where drug treatment induced a caspase- and cytochrome c-independent pathway in the absence of detectable damage to mitochondria. In apoptotic human glioma cells only translocation of AIF into the nucleus occurred. Thus, the same drug kills different types of glioma cells by different mitochondrial-dependent pathways.  相似文献   
849.
The available archive of sequence databases compiled from whole genome projects and budding proteomics efforts have enabled us to develop VIRTUAL2D, an interactive system for the assembly of virtual protein expression maps computed on the basis of theoretical isoelectric focusing point, molecular weight, tissue specificity and relative abundance for any set of proteins currently catalogued. This tool will assist in the preliminary, albeit putative, prediction of the identity and location of unknown and/or low abundance proteins in experimentally derived two-dimensional polyacrylamide gel electrophoresis maps.  相似文献   
850.
Xyloglucans are the principal glycans that interlace cellulose microfibrils in most flowering plants. The mur3 mutant of Arabidopsis contains a severely altered structure of this polysaccharide because of the absence of a conserved alpha-L-fucosyl-(1-->2)-beta-D-galactosyl side chain and excessive galactosylation at an alternative xylose residue. Despite this severe structural alteration, mur3 plants were phenotypically normal and exhibited tensile strength in their inflorescence stems comparable to that of wild-type plants. The MUR3 gene was cloned positionally and shown to encode a xyloglucan galactosyltransferase that acts specifically on the third xylose residue within the XXXG core structure of xyloglucan. MUR3 belongs to a large family of type-II membrane proteins that is evolutionarily conserved among higher plants. The enzyme shows sequence similarities to the glucuronosyltransferase domain of exostosins, a class of animal glycosyltransferases that catalyze the synthesis of heparan sulfate, a glycosaminoglycan with numerous roles in cell differentiation and development. This finding suggests that components of the plant cell wall and of the animal extracellular matrix are synthesized by evolutionarily related enzymes even though the structures of the corresponding polysaccharides are entirely different from each other.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号