全文获取类型
收费全文 | 983篇 |
免费 | 76篇 |
专业分类
1059篇 |
出版年
2023年 | 4篇 |
2022年 | 8篇 |
2021年 | 16篇 |
2020年 | 4篇 |
2019年 | 14篇 |
2018年 | 23篇 |
2017年 | 17篇 |
2016年 | 33篇 |
2015年 | 36篇 |
2014年 | 56篇 |
2013年 | 56篇 |
2012年 | 88篇 |
2011年 | 85篇 |
2010年 | 48篇 |
2009年 | 43篇 |
2008年 | 61篇 |
2007年 | 65篇 |
2006年 | 55篇 |
2005年 | 58篇 |
2004年 | 43篇 |
2003年 | 39篇 |
2002年 | 39篇 |
2001年 | 9篇 |
2000年 | 9篇 |
1999年 | 11篇 |
1998年 | 10篇 |
1997年 | 3篇 |
1996年 | 8篇 |
1995年 | 4篇 |
1994年 | 5篇 |
1993年 | 3篇 |
1992年 | 7篇 |
1991年 | 7篇 |
1990年 | 11篇 |
1989年 | 12篇 |
1988年 | 6篇 |
1987年 | 7篇 |
1986年 | 10篇 |
1985年 | 5篇 |
1983年 | 5篇 |
1982年 | 2篇 |
1981年 | 3篇 |
1980年 | 2篇 |
1979年 | 6篇 |
1978年 | 2篇 |
1977年 | 2篇 |
1976年 | 6篇 |
1975年 | 3篇 |
1969年 | 2篇 |
1968年 | 2篇 |
排序方式: 共有1059条查询结果,搜索用时 15 毫秒
101.
Steven T. Gardner Emily M. Bertucci Randall Sutton Andy Horcher Doug Aubrey Benjamin B. Parrott 《Molecular ecology resources》2023,23(1):131-144
Biological ageing is connected to life history variation across ecological scales and informs a basic understanding of age-related declines in organismal function. Altered DNA methylation dynamics are a conserved aspect of biological ageing and have recently been modelled to predict chronological age among vertebrate species. In addition to their utility in estimating individual age, differences between chronological and predicted ages arise due to acceleration or deceleration of epigenetic ageing, and these discrepancies are linked to disease risk and multiple life history traits. Although evidence suggests that patterns of DNA methylation can describe ageing in plants, predictions with epigenetic clocks have yet to be performed. Here, we resolve the DNA methylome across CpG, CHG, and CHH-methylation contexts in the loblolly pine tree (Pinus taeda) and construct epigenetic clocks capable of predicting ages in this species within 6% of its maximum lifespan. Although patterns of CHH-methylation showed little association with age, both CpG and CHG-methylation contexts were strongly associated with ageing, largely becoming hypomethylated with age. Among age-associated loci were those in close proximity to malate dehydrogenase, NADH dehydrogenase, and 18S and 26S ribosomal RNA genes. This study reports one of the first epigenetic clocks in plants and demonstrates the universality of age-associated DNA methylation dynamics which can inform conservation and management practices, as well as our ecological and evolutionary understanding of biological ageing in plants. 相似文献
102.
103.
104.
A new XRCC1-containing complex and its role in cellular survival of methyl methanesulfonate treatment 总被引:10,自引:0,他引:10 下载免费PDF全文
Luo H Chan DW Yang T Rodriguez M Chen BP Leng M Mu JJ Chen D Songyang Z Wang Y Qin J 《Molecular and cellular biology》2004,24(19):8356-8365
DNA single-strand break repair (SSBR) is important for maintaining genome stability and homeostasis. The current SSBR model derived from an in vitro-reconstituted reaction suggests that the SSBR complex mediated by X-ray repair cross-complementing protein 1 (XRCC1) is assembled sequentially at the site of damage. In this study, we provide biochemical data to demonstrate that two preformed XRCC1 protein complexes exist in cycling HeLa cells. One complex contains known enzymes that are important for SSBR, including DNA ligase 3 (DNL3), polynucleotide kinase 3'-phosphatase, and polymerase beta; the other is a new complex that contains DNL3 and the ataxia with oculomotor apraxia type 1 (AOA) gene product aprataxin. We report the characterization of the new XRCC1 complex. XRCC1 is phosphorylated in vivo and in vitro by CK2, and CK2 phosphorylation of XRCC1 on S518, T519, and T523 largely determines aprataxin binding to XRCC1 though its FHA domain. An acute loss of aprataxin by small interfering RNA renders HeLa cells sensitive to methyl methanesulfonate treatment by a mechanism of shortened half-life of XRCC1. Thus, aprataxin plays a role to maintain the steady-state protein level of XRCC1. Collectively, these data provide insights into the SSBR molecular machinery in the cell and point to the involvement of aprataxin in SSBR, thus linking SSBR to the neurological disease AOA. 相似文献
105.
Mucopolysaccharidosis type I (MPS I; McKusick 25280; Hurler syndrome, Hurler-Scheie syndrome and Scheie syndrome) is caused by a deficiency in the lysosomal hydrolase, alpha-L-iduronidase (EC 3.2.1.76). MPS I patients present within a clinical spectrum bounded by the extremes of Hurler and Scheie syndromes. The alpha-L-iduronidase missense mutations R89Q and R89W were investigated and altered an important arginine residue proposed to be a nucleophile activator in the catalytic mechanism of alpha-L-iduronidase. The R89Q alpha-L-iduronidase mutation was shown to result in a reduced level of alpha-L-iduronidase protein (< or =10% of normal control) compared to a normal control level of alpha-L-iduronidase protein that was detected for the R89W alpha-L-iduronidase mutation. When taking into account alpha-L-iduronidase specific activity, the R89W mutation had a greater effect on alpha-L-iduronidase activity than the R89Q mutation. However, overall the R89W mutation produced more residual alpha-L-iduronidase activity than the R89Q mutation. This was consistent with MPS I patients, with an R89W allele, having a less severe clinical presentation compared to MPS I patients with either a double or single allelic R89Q mutation. The effects of the R89Q and R89W mutations on enzyme activity supported the proposed role of R89 as a nucleophile activator in the catalytic mechanism of alpha-L-iduronidase. 相似文献
106.
The cytochrome P450s (CYPs) are the major enzymatic detoxification and drug metabolism system. Recently, it has become clear that several CYP isoforms exhibit positive and negative homotropic cooperativity. However, the toxicological implications of allosteric kinetics have not been considered, nor understood. The allosteric kinetics are particularly enigmatic in several respects. In many cases, CYPs bioactivate substrates to more toxic products, thus making it difficult to rationalize a functional advantage for positive cooperativity. Also, CYPs exhibit cooperativity with many structurally diverse ligands, in marked contrast to the specificity observed with other allosteric systems. Here, kinetic simulations are used to compare the probabilistic time- and concentration-dependent integrated toxicity function during conversion of substrate to product for CYP models exhibiting Michaelis-Menten (non-cooperative) kinetics, positive cooperativity, or negative cooperativity. The results demonstrate that, at low substrate concentrations, the slower substrate turnover afforded by cooperative CYPs compared with Michaelis-Menten enzymes can be a significant toxicological advantage, when toxic thresholds exist. When present, the advantage results from enhanced "distribution" of toxin in two pools, substrate and product, for an extended period, thus minimizing the chance that either exceeds its toxic threshold. At intermediate concentrations, the allosteric kinetics can be a modest advantage or modest disadvantage, depending on the kinetic parameters. However, at high substrate concentrations associated with a high probability of toxicity, fast turnover is desirable, and this advantage is provided also by the cooperative enzymes. For the positive homotropic cooperativity, the allosteric kinetics minimize the probability of toxicity over the widest range of system parameters. Furthermore, this apparent functional cooperativity is achieved without specific molecular recognition that is the hallmark of "traditional" allostery. 相似文献
107.
108.
Berning JM Coker CA Briggs D 《Journal of strength and conditioning research / National Strength & Conditioning Association》2008,22(2):390-395
Proponents of chain training suggest that using chains hung from the ends of barbells rather than using conventional barbells alone enhances strength, power, and neuromuscular adaptations. The purpose of this study was to determine whether a conventional barbell with chains compared to a conventional barbell without chains would affect the performance of an Olympic Clean. The subjects were also asked regarding their perception of how chains affected their lifting. Four male and 3 female competitive weightlifters who used chains as part of their training participated in the study. The testing protocol compared the subjects' lifting 80% and 85% of their 1 repetition maximum (1RM) using conventional barbells and their lifting 80% and 85% of their 1RM using chains (75% conventional barbells + 5% chains and 80% conventional barbells + 5% chains, respectively). Video analysis evaluated the bar's vertical displacement and velocity and the rate of force production. Vertical ground reaction forces for the first-pull, unweighting, and second-pull phases of the lift were evaluated by using a force plate. After testing, the subjects completed a 2-item questionnaire asking individual perception of the effects of the chains. The results showed no significant difference for condition for any of the variables examined. In contrast, all subjects perceived that the chains required a greater effort. In conclusion, the results indicated that the addition of chains provided no greater value over lifting conventional barbells alone in the performance of the Olympic Clean, although the subjects perceived the chains to have a positive effect. 相似文献
109.
110.
Background: Helicobacter pylori infection can lead to the development of gastritis, peptic ulcers and gastric cancer, which makes this bacterium an important concern for human health. Despite evoking a strong immune response in the host, H. pylori persists, requiring complex antibiotic therapy for eradication. Here we have studied the impact of a patient’s immune serum on H. pylori in relation to macrophage uptake, phagosome maturation, and bacterial killing. Materials and Methods: Primary human macrophages were infected in vitro with both immune serum‐treated and control H. pylori. The ability of primary human macrophages to kill H. pylori was characterized at various time points after infection. H. pylori phagosome maturation was analyzed by confocal immune fluorescence microscopy using markers specific for H. pylori, early endosomes (EEA1), late endosomes (CD63) and lysosomes (LAMP‐1). Results: Immune serum enhanced H. pylori uptake into macrophages when compared to control bacteria. However, a sufficient inoculum remained for recovery of viable H. pylori from macrophages, at 8 hours after infection, for both the serum‐treated and control groups. Both serum‐treated and control H. pylori phagosomes acquired EEA1 (15 minutes), CD63 and LAMP‐1 (30 minutes). These markers were then retained for the rest of an 8 hour time course. Conclusions: While immune sera appeared to have a slight positive effect on bacterial uptake, both serum‐treated and control H. pylori were not eliminated by macrophages. Furthermore, the same disruptions to phagosome maturation were observed for both serum‐treated and control H. pylori. We conclude that to eliminate H. pylori, a strategy is required to restore the normal process of phagosome maturation and enable effective macrophage killing of H. pylori, following a host immune response. 相似文献