首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   982篇
  免费   77篇
  1059篇
  2023年   4篇
  2022年   8篇
  2021年   16篇
  2020年   4篇
  2019年   14篇
  2018年   23篇
  2017年   17篇
  2016年   33篇
  2015年   36篇
  2014年   56篇
  2013年   56篇
  2012年   88篇
  2011年   85篇
  2010年   48篇
  2009年   43篇
  2008年   61篇
  2007年   65篇
  2006年   55篇
  2005年   58篇
  2004年   43篇
  2003年   39篇
  2002年   39篇
  2001年   9篇
  2000年   9篇
  1999年   11篇
  1998年   10篇
  1997年   3篇
  1996年   8篇
  1995年   4篇
  1994年   5篇
  1993年   3篇
  1992年   7篇
  1991年   7篇
  1990年   11篇
  1989年   12篇
  1988年   6篇
  1987年   7篇
  1986年   10篇
  1985年   5篇
  1983年   5篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1979年   6篇
  1978年   2篇
  1977年   2篇
  1976年   6篇
  1975年   3篇
  1969年   2篇
  1968年   2篇
排序方式: 共有1059条查询结果,搜索用时 15 毫秒
11.
Fumarate reductase (FRD) of Escherichia coli is a four-subunit membrane-bound complex that is synthesized during anaerobic growth when fumarate is available as a terminal oxidant. The two subunits that comprise the catalytic domain, FrdA and FrdB, are anchored to the cytoplasmic membrane surface by two small hydrophobic polypeptides, FrdC and FrdD, which are also required for the enzyme to interact with quinone. To better define the individual roles of the FrdC and FrdD polypeptides in FRD complex formation and quinone binding, we selectively mutagenized the frdCD genes. Frd- strains were identified by their inability to grow on restrictive media, and the resulting mutant FRD complexes were isolated and biochemically characterized. The majority of the frdC and frdD mutations were identified as single base deletions that caused premature termination in either FrdC or FrdD and resulted in the loss of one or more of the predicted transmembrane helices. Two additional frdC mutants were characterized that contained single base changes resulting in single amino acid substitutions. All mutant enzyme complexes were incapable of oxidizing the physiological electron donor, menaquinol-6, in the presence of fumarate. Additionally, the ability of the mutant complexes to oxidize reduced benzyl viologen or reduce the ubiquinone analogue 2,3-dimethoxy-5-methyl-6-pentyl-1,4-benzoquinone and phenazine methosulfate with succinate as electron donor were also affected but to varying degrees. The separation of oxidative and reductive activities with quinones suggests there are two quinone binding sites in the fumarate reductase complex and that electron transfer occurs in two le- steps carried out at these separate sites.  相似文献   
12.
Routine colposcopy was performed on 376 women with cervical squamous atypia (originally reported as "inflammatory atypia"). Colposcopy showed no abnormalities in 240 cases and a lesion in 136 cases; the latter were sampled by colposcopy-guided biopsy. The biopsy samples showed evidence of human papillomavirus (HPV) infection and/or grade I cervical intraepithelial neoplasia (CIN I) in 42 cases (11.1%), CIN II in 4 cases (1.1%) and CIN III in 5 cases (1.3%); the other 85 biopsied cases were histologically negative. Most cases of HPV/CIN I (35 of 42) and all of the cases of CIN II-III occurred in women under the age of 40. The detection rates were 4.4% for CIN II-III in women under the age of 40, 4.0% for HPV/CIN I in women 40 and older and 17.2% for HPV/CIN I in women under the age of 40 (P less than .001). It thus appears that women under the age of 40 who show cytologic evidence of squamous atypia would benefit from colposcopic examination.  相似文献   
13.
Transport of amino acids into 3T3 and SV3T3 (SV40 virus-transformed 3T3) cells was measured on glass cover slips. The 3T3 and SV3T3 cells contain both A (alanine preferring) and L (leucine preferring) systems for neutral amino acid transport. Initial rates of uptake of amino acids are about twofold higher in SV3T3 than in 3T3 cells. Other parameters measured, however, do not indicate marked differences in the transport of amino acids by the two cell types. L-system amino acids, such as leucine, are subject to trans-stimulation in both cell lines, whereas A-system amino acids, such as alanine and glycine, are not. Leucine was transported to higher levels in confluent cells than in nonconfluent cells. Glycine, however, shows distinctly less transport activity as the cells become confluent. Ehrlich ascites cell plasma membranes were prepared and assayed for amino acid-binding activity. Leucine-binding activity was detected by equilibrium dialysis in Triton X-100-treated membrane preparations.  相似文献   
14.
Incubation of rat-liver microsomes, previously azide-treated to inhibit catalase, with H2O2 caused a loss of cytochrome P-450 but not of cytochrome b5. This loss of P-450 was not prevented by scavengers of hydroxyl radical, chain-breaking antioxidants or metal ion-chelating agents. Application of the thiobarbituric acid (TBA) assay to the reaction mixture suggested that H2O2 induces lipid peroxidation, but this was found to be due largely or completely to an effect of H2O2 on the TBA assay. By contrast, addition of ascorbic acid and Fe(III) to the microsomes led to lipid peroxidation and P-450 degradation: both processes were inhibited by chelating agents and chain-breaking antioxidants, but not by hydroxyl radical scavengers. H2O2 inhibited ascorbate/Fe (III)-induced microsomal lipid peroxidation, but part of this effect was due to an action of H2O2 in the TBA test itself. H2O2 also decreased the colour measured after carrying out the TBA test upon authentic malondialdehyde, tetraethoxypropane, a DNA-Cu2+/o-phenanthroline system in the presence of a reducing agent, ox-brain phospholipid liposomes in the presence of Fe(III) and ascorbate, or a bleomycin-iron ion/DNA/ascorbate system. Caution must be used in interpreting the results of TBA tests upon systems containing H2O2.  相似文献   
15.
Ecosystems - A correction to this paper has been published: https://doi.org/10.1007/s10021-021-00614-y  相似文献   
16.
17.
18.
Surface acoustic waves (SAWs) can be used to drive liquids in portable microfluidic chips via the acoustic counterflow phenomenon. In this video we present the fabrication protocol for a multilayered SAW acoustic counterflow device. The device is fabricated starting from a lithium niobate (LN) substrate onto which two interdigital transducers (IDTs) and appropriate markers are patterned. A polydimethylsiloxane (PDMS) channel cast on an SU8 master mold is finally bonded on the patterned substrate. Following the fabrication procedure, we show the techniques that allow the characterization and operation of the acoustic counterflow device in order to pump fluids through the PDMS channel grid. We finally present the procedure to visualize liquid flow in the channels. The protocol is used to show on-chip fluid pumping under different flow regimes such as laminar flow and more complicated dynamics characterized by vortices and particle accumulation domains.  相似文献   
19.
Photosystem II (PSII) of photosynthesis has the unique ability to photochemically oxidize water. Recently an engineered bacterioferritin photochemical ‘reaction centre’ (BFR-RC) using a zinc chlorin pigment (ZnCe6) in place of its native heme has been shown to photo-oxidize bound manganese ions through a tyrosine residue, thus mimicking two of the key reactions on the electron donor side of PSII. To understand the mechanism of tyrosine oxidation in BFR-RCs, and explore the possibility of water oxidation in such a system we have built an atomic-level model of the BFR-RC using ONIOM methodology. We studied the influence of axial ligands and carboxyl groups on the oxidation potential of ZnCe6 using DFT theory, and finally calculated the shift of the redox potential of ZnCe6 in the BFR-RC protein using the multi-conformational molecular mechanics–Poisson-Boltzmann approach. According to our calculations, the redox potential for the first oxidation of ZnCe6 in the BRF-RC protein is only 0.57 V, too low to oxidize tyrosine. We suggest that the observed tyrosine oxidation in BRF-RC could be driven by the ZnCe6 di-cation. In order to increase the efficiency of tyrosine oxidation, and ultimately oxidize water, the first potential of ZnCe6 would have to attain a value in excess of 0.8 V. We discuss the possibilities for modifying the BFR-RC to achieve this goal.  相似文献   
20.
Disruption of peripheral circadian rhyme pathways dominantly leads to metabolic disorders. Studies on circadian rhythm proteins in the heart indicated a role for Clock or Per2 in cardiac metabolism. In contrast to Clock−/−, Per2−/− mice have larger infarct sizes with deficient lactate production during myocardial ischemia. To test the hypothesis that cardiac Per2 represents an important regulator of cardiac metabolism during myocardial ischemia, we measured lactate during reperfusion in Per1−/−, Per2−/− or wildtype mice. As lactate measurements in whole blood indicated an exclusive role of Per2 in controlling lactate production during myocardial ischemia, we next performed gene array studies using various ischemia-reperfusion protocols comparing wildtype and Per2−/− mice. Surprisingly, high-throughput gene array analysis revealed dominantly lipid metabolism as the differentially regulated pathway in wildtype mice when compared to Per2−/−. In all ischemia-reperfusion protocols used, the enzyme enoyl-CoA hydratase, which is essential in fatty acid beta-oxidation, was regulated in wildtype animals only. Studies using nuclear magnet resonance imaging (NMRI) confirmed altered fatty acid populations with higher mono-unsaturated fatty acid levels in hearts from Per2−/− mice. Unexpectedly, studies on gene regulation during reperfusion revealed solely pro inflammatory genes as differentially regulated ‘Per2-genes’. Subsequent studies on inflammatory markers showed increasing IL-6 or TNFα levels during reperfusion in Per2−/− mice. In summary, these studies reveal an important role of cardiac Per2 for fatty acid metabolism and inflammation during myocardial ischemia and reperfusion, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号