首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   780篇
  免费   69篇
  2023年   4篇
  2022年   6篇
  2021年   14篇
  2020年   4篇
  2019年   11篇
  2018年   22篇
  2017年   14篇
  2016年   29篇
  2015年   40篇
  2014年   44篇
  2013年   49篇
  2012年   77篇
  2011年   66篇
  2010年   40篇
  2009年   36篇
  2008年   56篇
  2007年   63篇
  2006年   42篇
  2005年   47篇
  2004年   37篇
  2003年   34篇
  2002年   32篇
  2001年   10篇
  2000年   6篇
  1999年   7篇
  1998年   7篇
  1997年   1篇
  1996年   7篇
  1995年   2篇
  1994年   3篇
  1993年   3篇
  1992年   4篇
  1991年   2篇
  1990年   3篇
  1989年   5篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1976年   3篇
  1975年   3篇
  1969年   1篇
排序方式: 共有849条查询结果,搜索用时 15 毫秒
91.
Restless Legs Syndrome (RLS), first chronicled by Willis in 1672 and described in more detail by Ekbom in 1945, is a prevalent sensorimotor neurological disorder (5%-10% in the population) with a circadian predilection for the evening and night. Characteristic clinical features also include a compelling urge to move during periods of rest, relief with movement, involuntary movements in sleep (viz., periodic leg movements of sleep), and fragmented sleep. Although the pathophysiology of RLS is unknown, dopaminergic neurotransmission and deficits in iron availability modulate expressivity. Genome-wide association studies have identified a polymorphism in an intronic region of the BTBD9 gene on chromosome 6 that confers substantial risk for RLS. Here, we report that loss of the Drosophila homolog CG1826 (dBTBD9) appreciably disrupts sleep with concomitant increases in waking and motor activity. We further show that BTBD9 regulates brain dopamine levels in flies and controls iron homeostasis through the iron regulatory protein-2 in human cell lines. To our knowledge, this represents the first reverse genetic analysis of a "novel" or heretofore poorly understood gene implicated in an exceedingly common and complex sleep disorder and the development of an RLS animal model that closely recapitulates all disease phenotypes.  相似文献   
92.

Background

In patients with genotype 1 chronic hepatitis C infection, telaprevir (TVR) in combination with peginterferon and ribavirin (PR) significantly increased sustained virologic response (SVR) rates compared with PR alone. However, genotypic changes could be observed in TVR-treated patients who did not achieve an SVR.

Methods

Population sequence analysis of the NS3•4A region was performed in patients who did not achieve SVR with TVR-based treatment.

Results

Resistant variants were observed after treatment with a telaprevir-based regimen in 12% of treatment-naïve patients (ADVANCE; T12PR arm), 6% of prior relapsers, 24% of prior partial responders, and 51% of prior null responder patients (REALIZE, T12PR48 arms). NS3 protease variants V36M, R155K, and V36M+R155K emerged frequently in patients with genotype 1a and V36A, T54A, and A156S/T in patients with genotype 1b. Lower-level resistance to telaprevir was conferred by V36A/M, T54A/S, R155K/T, and A156S variants; and higher-level resistance to telaprevir was conferred by A156T and V36M+R155K variants. Virologic failure during telaprevir treatment was more common in patients with genotype 1a and in prior PR nonresponder patients and was associated with higher-level telaprevir-resistant variants. Relapse was usually associated with wild-type or lower-level resistant variants. After treatment, viral populations were wild-type with a median time of 10 months for genotype 1a and 3 weeks for genotype 1b patients.

Conclusions

A consistent, subtype-dependent resistance profile was observed in patients who did not achieve an SVR with telaprevir-based treatment. The primary role of TVR is to inhibit wild-type virus and variants with lower-levels of resistance to telaprevir. The complementary role of PR is to clear any remaining telaprevir-resistant variants, especially higher-level telaprevir-resistant variants. Resistant variants are detectable in most patients who fail to achieve SVR, but their levels decline over time after treatment.  相似文献   
93.
BackgroundThe development of prostate tumors has been linked to co-morbid diabetes mellitus (DM) in several studies, potentially through the stimulation of insulin-like growth factor receptor (IGFR). This study evaluates the effect of anti-diabetic medication use on the development of high grade tumors and time to tumor progression compared to non-diabetics.MethodsThis retrospective, nested case control study identified patients with prostate cancer (PCa) from the Kentucky Medicaid Database. Cases were diagnosed with PCa and DM and using at least one of the following antidiabetic medications; sulfonylureas, insulin, metformin or TZDs. Cases were further stratified on their insulin exposure resulting from therapy. Controls were those with PCa without DM or any anti-diabetic medications.ResultsThe use of metformin or TZDs trended toward decreased odds of high-grade tumors and decreased risk of progression, while sulfonylureas and high-dose insulin tended toward an increased odds of high-grade tumors and increase the risk of progression compared to non-diabetics.ConclusionsFuture studies should be conducted to further evaluate the effects of anti-diabetic medications on tumor grade and time to prostate cancer progression.  相似文献   
94.
95.
96.
We investigated whether lines of transgenic tomato (Solanum lycopersicum) expressing the Bs2 resistance gene from pepper, a close relative of tomato, demonstrate improved resistance to bacterial spot disease caused by Xanthomonas species in replicated multi-year field trials under commercial type growing conditions. We report that the presence of the Bs2 gene in the highly susceptible VF 36 background reduced disease to extremely low levels, and VF 36-Bs2 plants displayed the lowest disease severity amongst all tomato varieties tested, including commercial and breeding lines with host resistance. Yields of marketable fruit from transgenic lines were typically 2.5 times that of the non-transformed parent line, but varied between 1.5 and 11.5 fold depending on weather conditions and disease pressure. Trials were conducted without application of any copper-based bactericides, presently in wide use despite negative impacts on the environment. This is the first demonstration of effective field resistance in a transgenic genotype based on a plant R gene and provides an opportunity for control of a devastating pathogen while eliminating ineffective copper pesticides.  相似文献   
97.
Proline-specific dipeptidyl peptidases (DPPs) are emerging targets for drug development. DPP4 inhibitors are approved in many countries, and other dipeptidyl peptidases are often referred to as DPP4 activity- and/or structure-homologues (DASH). Members of the DASH family have overlapping substrate specificities, and, even though they share low sequence identity, therapeutic or clinical cross-reactivity is a concern. Here, we report the structure of human DPP7 and its complex with a selective inhibitor Dab-Pip (L-2,4-diaminobutyryl-piperidinamide) and compare it with that of DPP4. Both enzymes share a common catalytic domain (α/β-hydrolase). The catalytic pocket is located in the interior of DPP7, deep inside the cleft between the two domains. Substrates might access the active site via a narrow tunnel. The DPP7 catalytic triad is completely conserved and comprises Ser162, Asp418 and His443 (corresponding to Ser630, Asp708 and His740 in DPP4), while other residues lining the catalytic pockets differ considerably. The "specificity domains" are structurally also completely different exhibiting a β-propeller fold in DPP4 compared to a rare, completely helical fold in DPP7. Comparing the structures of DPP7 and DPP4 allows the design of specific inhibitors and thus the development of less cross-reactive drugs. Furthermore, the reported DPP7 structures shed some light onto the evolutionary relationship of prolyl-specific peptidases through the analysis of the architectural organization of their domains.  相似文献   
98.
Brain Derived Neurotrophic Factor (BDNF) exerts strong pro-survival effects on developing and injured motoneurons. However, in clinical trials, BDNF has failed to benefit patients with amyotrophic lateral sclerosis (ALS). To date, the cause of this failure remains unclear. Motoneurons express the TrkB kinase receptor but also high levels of the truncated TrkB.T1 receptor isoform. Thus, we investigated whether the presence of this receptor may affect the response of diseased motoneurons to endogenous BDNF. We deleted TrkB.T1 in the hSOD1(G93A) ALS mouse model and evaluated the impact of this mutation on motoneuron death, muscle weakness and disease progression. We found that TrkB.T1 deletion significantly slowed the onset of motor neuron degeneration. Moreover, it delayed the development of muscle weakness by 33 days. Although the life span of the animals was not affected we observed an overall improvement in the neurological score at the late stage of the disease. To investigate the effectiveness of strategies aimed at bypassing the TrkB.T1 limit to BDNF signaling we treated SOD1 mutant mice with the adenosine A2A receptor agonist CGS21680, which can activate motoneuron TrkB receptor signaling independent of neurotrophins. We found that CGS21680 treatment slowed the onset of motor neuron degeneration and muscle weakness similarly to TrkB.T1 removal. Together, our data provide evidence that endogenous TrkB.T1 limits motoneuron responsiveness to BDNF in vivo and suggest that new strategies such as Trk receptor transactivation may be used for therapeutic intervention in ALS or other neurodegenerative disorders.  相似文献   
99.
Maintenance of adult tissues is carried out by stem cells and is sustained throughout life in a highly ordered manner. Homeostasis within the stem-cell compartment is governed by positive- and negative-feedback regulation of instructive extrinsic and intrinsic signals. ErbB signalling is a prerequisite for maintenance of the intestinal epithelium following injury and tumour formation. As ErbB-family ligands and receptors are highly expressed within the stem-cell niche, we hypothesize that strong endogenous regulators must control the pathway in the stem-cell compartment. Here we show that Lrig1, a negative-feedback regulator of the ErbB receptor family, is highly expressed by intestinal stem cells and controls the size of the intestinal stem-cell niche by regulating the amplitude of growth-factor signalling. Intestinal stem-cell maintenance has so far been attributed to a combination of Wnt and Notch activation and Bmpr inhibition. Our findings reveal ErbB activation as a strong inductive signal for stem-cell proliferation. This has implications for our understanding of ErbB signalling in tissue development and maintenance and the progression of malignant disease.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号