首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92513篇
  免费   6733篇
  国内免费   6403篇
  105649篇
  2024年   201篇
  2023年   1255篇
  2022年   2944篇
  2021年   4876篇
  2020年   3195篇
  2019年   4018篇
  2018年   3959篇
  2017年   2866篇
  2016年   4051篇
  2015年   5844篇
  2014年   6887篇
  2013年   7248篇
  2012年   8494篇
  2011年   7737篇
  2010年   4482篇
  2009年   4187篇
  2008年   4775篇
  2007年   4146篇
  2006年   3533篇
  2005年   2820篇
  2004年   2312篇
  2003年   2105篇
  2002年   1698篇
  2001年   1471篇
  2000年   1342篇
  1999年   1407篇
  1998年   819篇
  1997年   892篇
  1996年   813篇
  1995年   775篇
  1994年   673篇
  1993年   570篇
  1992年   682篇
  1991年   536篇
  1990年   455篇
  1989年   331篇
  1988年   278篇
  1987年   219篇
  1986年   185篇
  1985年   210篇
  1984年   124篇
  1983年   118篇
  1982年   54篇
  1981年   23篇
  1980年   20篇
  1979年   18篇
  1976年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
131.
The native serine protease proteinase K binds two calcium cations. It has been reported that Ca2+ removal decreased the enzyme’s thermal stability and to some extent the substrate affinity, but has discrepant effects on catalytic activity of the enzyme. Molecular dynamics simulations were performed on the Ca2+-bound and Ca2+-free proteases to investigate the mechanism by which the calciums affect the structural stability, molecular motions, and catalytic activity of proteinase K. Very similar structural properties were observed between these two forms of proteinase K during simulations; and several long-lived hydrogen bonds and salt bridges common to both forms of proteinase K were found to be crucial in maintaining the local conformations around these two Ca2+ sites. Although Ca2+ removal enhanced the overall flexibility of proteinase K, the flexibility in a limited number of segments surrounding the substrate-binding pockets decreased. The largest differences in the equilibrium structures of the two simulations indicate that, upon the removal of Ca2+, the large concerted motion originating from the Ca1 site can transmit to the substrate-binding regions but not to the catalytic triad residues. In conjunction with the large overlap of the essential subspaces between the two simulations, these results not only provide insight into the dynamics of the underlying molecular mechanism responsible for the unchanged enzymatic activity as well as the decreased thermal stability and substrate affinity of proteinase K upon Ca2+ removal, but also complement the experimentally determined structural and biochemical data.  相似文献   
132.
To develop a durable proton‐exchange membrane (PEM) for fuel‐cell applications, a series of sulfonated poly(benzoxazole thioether sulfone)s ( SPTESBOs) are designed and synthesized, with anticipated good dimensional stability (via acid–base cross linking), improved oxidative stability against free radicals (via incorporation of thioether groups), and enhanced inherent stability (via elimination of unstable end groups) of the backbone. The structures and the degree of sulfonation of the copolymers are characterized using Fourier‐transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy (1H NMR and 19F NMR). The electrochemical stabilities of the monomers are examined using cyclic voltammetry in a typical three‐electrode cell configuration. The physicochemical properties of the membranes vital to fuel‐cell performance are also carefully evaluated under conditions relevant to fuel‐cell operation, including chemical and thermal stability, proton conductivity, solubility in different solvents, water uptake, and swelling ratio. The new membranes exhibit low dimensional change at 25°C to 90°C and excellent thermal stability up to 250°C. Upon elimination of unstable end groups, the co‐polymers display enhanced chemical resistance and oxidative stability in Fenton's test. Further, the SPTESBO‐HFB‐60 (HFB‐60=hexafluorobenzene, 60 mol% sulfone) membrane displays comparable fuel‐cell performance to that of an NRE 212 membrane at 80°C under fully humidified condition, suggesting that the new membranes have the potential to be more durable but less expensive for fuel‐cell applications.  相似文献   
133.
134.
Achieving high-performance in all-small-molecule organic solar cells (ASM-OSCs) significantly relies on precise nanoscale phase separation through domain size manipulation in the active layer. Nonetheless, for ASM-OSC systems, forging a clear connection between the tuning of domain size and the intricacies of phase separation proves to be a formidable challenge. This study investigates the intricate interplay between domain size adjustment and the creation of optimal phase separation morphology, crucial for ASM-OSCs’ performance. It is demonstrated that exceptional phase separation in ASM-OSCs’ active layer is achieved by meticulously controlling the continuity and uniformity of domains via re-packing process. A series of halogen-substituted solvents (Fluorobenzene, Chlorobenzene, Bromobenzene, and Iodobenzene) is adopted to tune the re-packing kinetics, the ASM-OSCs treated with CB exhibited an impressive 16.2% power conversion efficiency (PCE). The PCE enhancement can be attributed to the gradual crystallization process, promoting a smoothly interconnected and uniformly distributed domain size. This, in turn, leads to a favorable phase separation morphology, enhanced charge transfer, extended carrier lifetime, and consequently, reduced recombination of free charges. The findings emphasize the pivotal role of re-packing kinetics in achieving optimal phase separation in ASM-OSCs, offering valuable insights for designing high-performance ASM-OSCs fabrication strategies.  相似文献   
135.

Background

As the amount of data from genome wide association studies grows dramatically, many interesting scientific questions require imputation to combine or expand datasets. However, there are two situations for which imputation has been problematic: (1) polymorphisms with low minor allele frequency (MAF), and (2) datasets where subjects are genotyped on different platforms. Traditional measures of imputation cannot effectively address these problems.

Methodology/Principal Findings

We introduce a new statistic, the imputation quality score (IQS). In order to differentiate between well-imputed and poorly-imputed single nucleotide polymorphisms (SNPs), IQS adjusts the concordance between imputed and genotyped SNPs for chance. We first evaluated IQS in relation to minor allele frequency. Using a sample of subjects genotyped on the Illumina 1 M array, we extracted those SNPs that were also on the Illumina 550 K array and imputed them to the full set of the 1 M SNPs. As expected, the average IQS value drops dramatically with a decrease in minor allele frequency, indicating that IQS appropriately adjusts for minor allele frequency. We then evaluated whether IQS can filter poorly-imputed SNPs in situations where cases and controls are genotyped on different platforms. Randomly dividing the data into “cases” and “controls”, we extracted the Illumina 550 K SNPs from the cases and imputed the remaining Illumina 1 M SNPs. The initial Q-Q plot for the test of association between cases and controls was grossly distorted (λ = 1.15) and had 4016 false positives, reflecting imputation error. After filtering out SNPs with IQS<0.9, the Q-Q plot was acceptable and there were no longer false positives. We then evaluated the robustness of IQS computed independently on the two halves of the data. In both European Americans and African Americans the correlation was >0.99 demonstrating that a database of IQS values from common imputations could be used as an effective filter to combine data genotyped on different platforms.

Conclusions/Significance

IQS effectively differentiates well-imputed and poorly-imputed SNPs. It is particularly useful for SNPs with low minor allele frequency and when datasets are genotyped on different platforms.  相似文献   
136.
Brevipalpus obovatus Donnadieu is an important pest mite on tea plants in South China. In the current study, predatory mites of B. obovatus in the tea gardens of Guangzhou were extensively surveyed. In total, 13 species of predatory mites (four families with seven genera) were recorded. The population proportion of Amblyseius hainanensis Wu et Qian was the highest (68.6?%), followed by that of Anystis baccarum (L.) (8.4?%) and A. theae Wu (6.3?%). The effects of starvation time, habitat size and pest population density on the predatory efficiency of the most dominant species, A. hainanensis, feeding on B. obovatus were assessed. In addition, the effectiveness of artificial rainfall in reducing B. obovatus populations was evaluated. After starvation for 48?h, the predatory efficiency of A. hainanensis was significantly higher than those that had been starved for 24 or 72?h when 30-50 B. obovatus eggs were made available. The predation of A. hainanensis on B. obovatus also increased with increasing prey density. The number of prey attacked by A. hainanensis in a 3.2?cm(2) habitat was significantly higher than in a 6.3?cm(2) habitat. The average predation of A. hainanensis was 31.7 eggs per day when offered 100 B. obovatus eggs on a tea leaf. This decreased to 17.8 eggs per day when four A. hainanensis shared 100 B. obovatus eggs. B. obovatus populations can be reduced by artificial rainfall, with the reduction affected by rainfall intensity. With an intensity of 40?mm in 15?min, 90.2?% mortality of B. obovatus occurred; lower mortalities were recorded (13.3 and 29.8?%) when the intensity was 2 or 4?mm in 15?min. Combination of the predatory mite A. hainanensis and artificial rainfall for the integrated pest management of B. obovatus is discussed.  相似文献   
137.
Camellia oleifera is believed to exhibit a complex intraspecific polyploidy phenomenon. Abnormal microsporogenesis can promote the formation of unreduced gametes in plants and lead to sexual polyploidy, so it is hypothesized that improper meiosis probably results in the formation of natural polyploidy in Camellia oleifera. In this study, based on the cytological observation of meiosis in pollen mother cells (PMCs), we found natural 2n pollen for the first time in Camellia oleifera, which may lead to the formation of natural polyploids by sexual polyploidization. Additionally, abnormal cytological behaviour during meiosis, including univalent chromosomes, extraequatorial chromosomes, early segregation, laggard chromosomes, chromosome stickiness, asynchronous meiosis and deviant cytokinesis (monad, dyads, triads), was observed, which could be the cause of 2n pollen formation. Moreover, we confirmed a relationship among the length–width ratio of flower buds, stylet length and microsporogenesis. This result suggested that we can immediately determine the microsporogenesis stages by phenotypic characteristics, which may be applicable to breeding advanced germplasm in Camellia oleifera.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12298-021-01002-5.  相似文献   
138.
Cu/Zn superoxide dismutase (SOD1) is implicated in various pathological conditions including Down's syndrome, neurodegenerative diseases, and afflictions of the autonomic nervous system (ANS). To assess the SOD1 contribution to ANS dysfunction, especially its influence on cardiac regulation, we studied the heart rate variability (HRV) and cardiac arrhythmias in conscious 12-month-old male and female transgenic mice for the human SOD1 gene (TghSOD1). TghSOD1 mice presented heart rate reduction as compared with control FVB/N individuals. All HRV parameters reflecting parasympathetic activity were increased in TghSOD1. Pharmacological studies confirmed that the parasympathetic tone was exacerbated and the sympathetic pathway was functional in TghSOD1 mice. A high frequency of atrioventricular block and premature ventricular contractions was observed in TghSOD1. By biochemical assays we found that SOD1 activities were multiplied by 9 and 4 respectively in the heart and brainstem of transgenic mice. A twofold decrease in cholinesterase activity was observed in the heart but not in the brainstem. We demonstrate that SOD1 overexpression induces an ANS dysfunction by an exacerbated vagal tone that may be related to impaired cardiac activity of the cholinesterases and may explain the high occurrence of arrhythmias.  相似文献   
139.
140.
The galactofuranose moiety found in many surface constituents of microorganisms is derived from UDP-D-galactopyranose (UDP-Galp) via a unique ring contraction reaction catalyzed by a FAD-dependent UDP-Galp mutase. When the enzyme is reduced by sodium dithionite, its catalytic efficiency increases significantly. Since the overall transformation exhibits no net change in the redox state of the parties involved, how the enzyme-bound FAD plays an active role in the reaction mechanism is puzzling. In this paper, we report our study of the catalytic properties of UDP-Galp mutase reconstituted with deaza-FADs. It was found that the mutase reconstituted with FAD or 1-deazaFAD has comparable activity, while that reconstituted with 5-deazaFAD is catalytically inactive. Because 5-deazaFAD is restricted to net two-electron process, yet FAD and 1-deazaFAD can undergo concerted two-electron as well as stepwise one-electron redox reactions, the above results support a radical mechanism for the mutase catalyzed reaction. In addition, the activity of the mutase reconstituted with FAD was found to increase considerably at high pHs. These observations have allowed us to propose a new mechanism involving one-electron transfer from the reduced FAD to an oxocarbenium intermediate generated by C-1 elimination of UDP to give a hexose radical and a flavin semiquinone. Subsequent radical recombination leads to a coenzyme-substrate adduct which may play a central role to facilitate the opening and recyclization of the galactose ring. A deprotonation step, accompanied or followed the electron transfer step, to increase the nucleophilicity of the flavin radical anion may account for the activity enhancement at pH > 8.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号