首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   213篇
  免费   16篇
  国内免费   1篇
  2021年   2篇
  2019年   3篇
  2018年   2篇
  2017年   2篇
  2016年   6篇
  2015年   8篇
  2014年   8篇
  2013年   6篇
  2012年   18篇
  2011年   28篇
  2010年   11篇
  2009年   11篇
  2008年   4篇
  2007年   4篇
  2006年   6篇
  2005年   4篇
  2004年   4篇
  2003年   5篇
  2002年   8篇
  2001年   2篇
  2000年   2篇
  1996年   4篇
  1995年   3篇
  1992年   4篇
  1987年   2篇
  1986年   3篇
  1985年   3篇
  1984年   5篇
  1983年   6篇
  1981年   1篇
  1978年   1篇
  1977年   4篇
  1976年   1篇
  1975年   1篇
  1974年   3篇
  1973年   2篇
  1972年   2篇
  1971年   3篇
  1970年   7篇
  1968年   5篇
  1967年   3篇
  1966年   1篇
  1963年   3篇
  1962年   2篇
  1960年   3篇
  1959年   1篇
  1958年   1篇
  1945年   1篇
  1923年   1篇
  1919年   1篇
排序方式: 共有230条查询结果,搜索用时 15 毫秒
101.
102.
Successful treatment of brain tumors such as glioblastoma multiforme (GBM) is limited in large part by the cumulative dose of Radiation Therapy (RT) that can be safely given and the blood-brain barrier (BBB), which limits the delivery of systemic anticancer agents into tumor tissue. Consequently, the overall prognosis remains grim. Herein, we report our pilot studies in cell culture experiments and in an animal model of GBM in which RT is complemented by PEGylated-gold nanoparticles (GNPs). GNPs significantly increased cellular DNA damage inflicted by ionizing radiation in human GBM-derived cell lines and resulted in reduced clonogenic survival (with dose-enhancement ratio of ∼1.3). Intriguingly, combined GNP and RT also resulted in markedly increased DNA damage to brain blood vessels. Follow-up in vitro experiments confirmed that the combination of GNP and RT resulted in considerably increased DNA damage in brain-derived endothelial cells. Finally, the combination of GNP and RT increased survival of mice with orthotopic GBM tumors. Prior treatment of mice with brain tumors resulted in increased extravasation and in-tumor deposition of GNP, suggesting that RT-induced BBB disruption can be leveraged to improve the tumor-tissue targeting of GNP and thus further optimize the radiosensitization of brain tumors by GNP. These exciting results together suggest that GNP may be usefully integrated into the RT treatment of brain tumors, with potential benefits resulting from increased tumor cell radiosensitization to preferential targeting of tumor-associated vasculature.  相似文献   
103.
104.
105.
106.
We have chosen to use the filamentous fungus Neurospora crassa to produce subunit vaccines. Here we describe the production and purification of Influenza hemagglutinin and neuraminidase antigens in N. crassa. The N. crassa system used by Neugenesis offers many advantages over other systems for production of recombinant protein. In contrast to mammalian cell culture, N. crassa can be grown in a rapid and economic manner, generating large amounts of recombinant protein in simple, defined medium. Vaccines, therefore, can be produced more rapidly and at lower cost than conventional cell culture or egg-based systems. This has important applications to tailoring the seasonal vaccine supply and responding to new pandemics.  相似文献   
107.
108.

Background

Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a CAG repeat expansion within the huntingtin gene. Mutant huntingtin protein misfolds and accumulates within neurons where it mediates its toxic effects. Promoting mutant huntingtin clearance by activating macroautophagy is one approach for treating Huntington's disease (HD). In this study, we evaluated the mTOR kinase inhibitor and macroautophagy promoting drug everolimus in the R6/2 mouse model of HD.

Results

Everolimus decreased phosphorylation of the mTOR target protein S6 kinase indicating brain penetration. However, everolimus did not activate brain macroautophagy as measured by LC3B Western blot analysis. Everolimus protected against early declines in motor performance; however, we found no evidence for neuroprotection as determined by brain pathology. In muscle but not brain, everolimus significantly decreased soluble mutant huntingtin levels.

Conclusions

Our data suggests that beneficial behavioral effects of everolimus in R6/2 mice result primarily from effects on muscle. Even though everolimus significantly modulated its target brain S6 kinase, this did not decrease mutant huntingtin levels or provide neuroprotection.
  相似文献   
109.

Background

A study from Scotland reported that the p53 mutation frequency in breast tumors is associated with socio-economic deprivation.

Methods

We analyzed the association of the tumor p53 mutational status with tumor characteristics, education, and self-reported annual household income (HI) among 173 breast cancer patients from the greater Baltimore area, United States.

Results

p53 mutational frequency was significantly associated with HI. Patients with < $15,000 HI had the highest p53 mutation frequency (21%), followed by the income group between $15,000 and $60,000 (18%), while those above $60,000 HI had the fewest mutations (5%). When dichotomized at $60,000, 26 out of 135 patients in the low income category had acquired a p53 mutation, while only 2 out of 38 with a high income carried a mutation (P < 0.05). In the adjusted logistic regression analysis with 3 income categories (trend test), the association between HI and p53 mutational status was independent of tumor characteristics, age, race/ethnicity, tobacco smoking and body mass. Further analyses revealed that HI may impact the p53 mutational frequency preferentially in patients who develop an estrogen receptor (ER)-negative disease. Within this group, 42% of the low income patients (< $15,000 HI) carried a mutation, followed by the middle income group (21%), while those above $60,000 HI did not carry mutations (P trend < 0.05).

Conclusions:

HI is associated with the p53 mutational frequency in patients who develop an ER-negative disease. Furthermore, high income patients may acquire fewer p53 mutations than other patients, suggesting that lifetime exposures associated with socio-economic status may impact breast cancer biology.  相似文献   
110.
Environmental enrichment (EE) reduces drug and sucrose cue-reactivity in rats. In a previous study we reported that 1 month of EE (large cage, toys, and social cohorts) significantly reduced sucrose cue-reactivity. In the present study, we examined whether overnight (22 h) EE would be as effective. We also examined whether social enrichment (SE), enrichment alone (SoloEE), or exposure to an alternative environment (AEnv) might account for the EE effect. Rats self-administered 10% sucrose (.2 mL/delivery) in 10 daily 2-h sessions. Sucrose delivery was accompanied by a tone+light cue. Rats were then exposed to enrichment or alternative environment conditions overnight (acute) or for 29 days (chronic). Sucrose cue-reactivity was measured after this period of forced abstinence in a session identical to training, but no sucrose was delivered with the cue. All acute conditions markedly reduced sucrose cue-reactivity after 1 day of forced abstinence compared to single-housed rats in standard vivarium housing (CON). Sucrose consumption was also significantly reduced in all groups but SoloEE in a next-day test. All acute conditions but SE significantly reduced sucrose cue-reactivity when administered just prior to Day 30 of forced abstinence; all reduced sucrose consumption in a next-day test. All chronic conditions except for SE and AEnv significantly reduced sucrose cue-reactivity on the Day 30 test and sucrose consumption in a next day test. For both acute and chronic comparisons, EE manipulations were the most effective at reducing sucrose cue-reactivity and consumption. SoloEE and EE were equally effective at reducing sucrose cue-reactivity and similarly effective at reducing sucrose consumption. This indicates that social interaction is not a necessary condition for reducing sucrose-motivated behaviors. These results may be useful in the development of anti-relapse strategies for drug and food addictions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号